YEAR BOOK®

YEAR BOOK OF REHABILITATION® 1989

KAPLAN

The Year Book of REHABILITATION®

Editor

Paul E. Kaplan, M.D., F.A.C.P.

Associate Editors

Robert G. Frank, Ph.D.

Dorothy L. Gordon, D.N.Sc., R.N.

James S. Lieberman, M.D.

Robert L. Magnuson, M.D.

Gabriella E. Molnar, M.D.

Otto D. Payton, Ph.D., P.T.

Martha Taylor Sarno, M.D.hc

Year Book Medical Publishers, Inc. Chicago • London • Boca Raton

Copyright © September 1989 by YEAR BOOK MEDICAL PUBLISHERS, INC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.

Printed in U.S.A.

International Standard Book Number: 0-8151-5245-O International Standard Serial Number: 8756-3460

Editor-in-Chief, Year Book Publishing: Nancy Gorham

Sponsoring Editor: Cathy Dombai

Manager, Medical Information Services: Laura I. Shedore Assistant Director, Manuscript Services: Frances M. Perveiler

Assistant Managing Editor, Year Book Editing Services: Wayne Larsen

Production Coordinator: Max F. Perez Proofroom Supervisor: Barbara M. Kelly

Journals Represented

Year Book Medical Publishers subscribes to and surveys nearly 700 U.S. and foreign medical and allied health journals. From these journals, the Editors select the articles to be abstracted. Journals represented in this YEAR BOOK are listed below.

Acta Chirurgica Scandinavica

Acta Odontologica Scandinavica

Acta Physiologica Scandinavica

Acta Psychiatrica Scandinavica

American Heart Journal

American Journal of Cardiology

American Journal of Epidemiology

American Journal of Kidney Diseases

American Journal of Neuroradiology

American Journal of Occupational Therapy

American Journal of Physical Medicine and Rehabilitation

American Journal of Physiology

American Journal of Psychiatry

Anesthesiology

Annals of International Medicine

Annals of Neurology

Annals of Otology, Rhinology and Laryngology

Annals of Plastic Surgery

Archives of Disease in Childhood

Archives of General Psychiatry

Archives of Neurology

Archives of Physical Medicine and Rehabilitation

Arthritis and Rheumatism

Athletic Training

Brain

Brain and Language

British Heart Journal

British Journal of Radiology

British Journal of Urology

British Medical Journal

Bulletin of the Menninger Clinic

Cel

Clinical Orthopaedics and Related Research

Clinical Pediatrics

Clinical Science

Developmental Medicine and Child Neurology

Diagnostic Microbiology and Infectious Disease

Electroencephalography and Clinical Neurophysiology

Experimental Neurology

Geriatrics

IEEE Transactions on BioMedical Engineering

International Disability Studies Journal

Journal of Adolescent Health Care

Journal of Advanced Nursing

Journal of the American Geriatrics Society

Journal of the American Medical Association

Iournal of Applied Physiology

Journal of Biomedical Engineering

Journal of Bone and Joint Surgery (American volume)

Journal of Bone and Joint Surgery (British volume)

Journal of Cardiopulmonary Rehabilitation

Journal of Clinical Epidemiology

Journal of Clinical Ultrasound

Journal of Communication Disorders

Journal of Consulting and Clinical Psychology Journal of Developmental and Behavioral Pediatrics

Journal of Gerontology

Journal of Hand Surgery (American volume)

Journal of Hand Surgery (British volume)

Journal of Health and Social Behavior

Journal of Internal Medicine

Journal of Neurology, Neurosurgery, and Psychiatry

Journal of Neurophysiology

Journal of Neuroscience Nursing

Journal of Neurosurgery

Journal of Orthopaedic and Sports Physical Therapy

Journal of Pediatric Orthopedics

Journal of Pediatric Surgery

Journal of Pediatrics

Journal of Phychosomatic Research

Journal of Rehabilitation

Journal of Rehabilitation Research and Development

Journal of Rheumatology

Journal of Speech and Hearing Disorders

Journal of Sports Medicine and Physical Fitness

Journal of Sports Sciences

Journal of Trauma

Journal of Urology

Lancet

Laryngoscope

Life Sciences

Mayo Clinic Proceedings

Miltary Medicine

Muscle and Nerve

Nature

Neurology

Neurosurgery

New England Journal of Medicine

Nursing Research

Occupational Therapy Journal of Research

Orthopaedic Review

Orthotics and Prosthetics

Pain

Paraplegia

Pediatric Neurology

Pediatrics

Physical and Occupational Therapy in Pediatrics

Physical Therapy

Plastic and Reconstructive Surgery

Psychological Medicine

Psychophysiology

Radiology

Rehabilitation Nursing

Rehabilitation Psychology Scandinavian Journal of Plastic and Reconstructive Surgery

Scandinavian Journal of Rehabilitation Medicine

Seminars in Hearing

Southern Medical Journal

Spine

Stroke

Thorax

Transplantation

VASA: Zeitschrift fur Grefasskrankheiten

Western Journal of Medicine

Publisher's Preface

We welcome Robert G. Frank, Ph.D., as an Associate Editor of the YEAR BOOK OF REHABILITATION. Dr. Frank, Associate Chairman of the Department of Physical Medicine and Rehabilitation Medicine at the Howard A. Rusk Rehabilitation Center, University of Missouri at Columbia, selected and commented on material related to rehabilitation psychology.

Introduction

As I walked outside yesterday, my eyes became very irritated and I started to sneeze. It forcefully reminded me that spring has arrived: a hot, active, exciting spring. True to form, our series has continued to evolve and grow. The organization of this book has, in fact, greatly changed.

Each of the editors now has his or her own chapter. Each editor has written an introduction to her or his chapter and has determined the order of the abstracts. There are now 8 chapters, on cardiac rehabilitation, rehabilitation psychology, nursing rehabilitation, neurologic rehabilitation, musculoskeletal rehabilitation, pediatric rehabilitation, therapies, and communication. This new organization is decentralized and has produced a great deal of variety within this volume. New topics reviewed include the theory of measurement, stress/pregnancy, ventilatory support, and transplantation. We especially wish to thank Ms. Nancy Gorham and Ms. Cathy Dombai for their energetic assistance.

Paul E. Kaplan, M.D.

Table of Contents

Th	ne material covered in this volume represents literature reviewed up to December 1988.
	JOURNALS REPRESENTED
	Publisher's Preface
	Introduction x
1.	Exercise, Cardiopulmonary Transplantation Rehabilitation, and Related Topics, edited by PAUL E. KAPLAN, M.D., F.A.C.P
	Introduction
2.	Rehabilitation Psychology, edited by ROBERT G. FRANK, Ph.D 2
	Introduction
3.	Nursing and General Issues in Rehabilitation, edited by DOROTHY L. GORDON, D.N.Sc., R.N
	Introduction
4.	Neurological Rehabilitation, edited by JAMES LIEBERMAN, M.D 99
	Introduction99Spinal Cord Injury and Spine99Neuromuscular Disorders114Peripheral Nerve Disorders118Traumatic Brain Injury125Cerebrovascular Disorders129
5.	Musculoskeletal Function and Pain, edited by ROBERT L. MAGNUSON, M.D
	Introduction
6.	Pediatric Rehabilitation, edited by GABRIELLA E. MOLNAR, M.D 155
	Introduction
7.	Physical Therapy, Occupational Therapy, and Bioengineering, edited by OTTO D. PAYTON, Ph.D., P.T
	Introduction

viii / Table of Contents

Research .																		. 220
Outcomes .										÷								. 223
Physiology.																		. 247
Devices			×															. 251
Staff																		. 257
Ethics																		. 257
peech, Langu ARNO, M.D.H																	,	. 259
Introduction	١.																	. 259
Speech-Lang	gua	ge	P	atl	nol	log	gy											. 259
Audiology .												٠						. 278
Subject Inde Author Indi																		

1 Exercise, Cardiopulmonary Transplantation Rehabilitation, and Related Topics

Introduction

This year has been especially fertile for research related to exercise and exercise-induced phenomena. Both animal and human populations have been investigated, with some fascinating results. One other topic explored here is transplantation. Even though the transplanted organ is supposed to react normally, very interesting musculoskeletal and neuromuscular functional deficiencies have been observed. This field is rapidly growing, thus providing even more promise for rehabilitation services and research. First, though, I wanted to present a paper with interesting consequences for rehabilitation medicine curricula.

Paul E Kaplan, M.D., F.A.C.P.

Continuity of Care: A Teaching Model

Klingbeil GEG, Fiedler IG (Med College of Wisconsin, Milwaukee) Am J Phys Med Rehabil 67:77–81, April 1988

1 - 1

Rehabilitation medicine covers the treatment of patients from the onset of disability until the return to the community. A curriculum was developed for residents in rehabilitation medicine that includes acute care, inpatient rehabilitation, and community reentry.

The initial phase begins with emergency room entry and includes a stay in the acute care ward. The resident learns of the medical needs of patients who have sustained major trauma during this first phase of the program. During the rehabilitation phase, medically stable patients undergo restoration and preparation for community reintegration. The resident provides primary care, establishes goals, prescribes treatment, and supervises therapy. In the final stage of this program, the patient is ready for reentry into the community. The resident remains in contact with the patient through the clinic and follows each patient throughout the residency.

This curriculum should prepare the resident for all aspects of the role of physiatrist. The resident should come to understand the process of rehabilitation by follow-up of patients throughout the entire residency. Cost-effectiveness will also be learned through experience with community resources. This curriculum can be adapted for medical students.

▶ Because rehabilitation starts in a focal sense—trauma happening in a specific community—and ends in a local sense when the patient is reintroduced to his community, rehabilitation remains innately both local and focal rather than "global." The curriculum presented here, indeed, reads more like theology than the application of a scientific discipline. These types of considerations make one uneasy in studying the 2 appendixes. Is there any ambience in this model? Where and when does research get applied? What does "liaison with community agencies" mean? The proposed curriculum appears at once soft, compulsive, and rigid. It does not meet hard demands for quality scientific achievement and production: the hard edge of scientific progress.—P.E. Kaplen, M.D.

Exercise

The Cardiovascular Effects of Deconditioning After Endurance Training in Rats

1 - 2

Karhunen MK, Rämö MP, Kettunen R, Hirvonen L (Univ of Oulu, Finland) *Acta Physiol Scand* 133:307–314, July 1988

Physical deconditioning, which is a sedentary period after intense endurance training, decreases stroke volume and end-diastolic volume during exercise compared with the trained state in human beings. This may result from a decrease in the training-induced left ventricular hypertrophy, sc. athlete's heart, and reduced filling of the left ventricle. The hemodynamic effects of endurance training and physical deconditioning in rats were assessed by open-chest intrumentation which allowed simultaneous measurements of cardiac contractility, preload, and afterload.

Anesthetized rats were used. Aortic and left ventricular pressure recordings and volume measurements were obtained using the thermodilution method during isoproterenol and CaCl₂ loads. Ten animals were in the training group, and 13 were in the control group. The resting stroke volume was significantly larger in the training group. During the CaCl₂ infusion, stroke index, end-diastolic, and end-systolic volumes increased in the training group and decreased in the control group. Isoproterenol and CaCl₂ decreased systemic vascular resistance in the training group but increased it in the control group. After a 6-week deconditioning after the training period, stroke index, end-diastolic, and end-systolic volumes decreased during CaCl₂ and isoproterenol infusions, similar to the control deconditioning group. Peripheral resistance increased in both the control and training groups. Cardiac hypertrophy seen during training was partially reversed after the deconditioning period.

It is concluded that endurance training improves the pumping performance of the rat heart by enhancing the diastolic filling of the left ventri-

cle and reducing peripheral resistance during inotropic load. Left ventricular contractility was not affected. A 6-week deconditioning period after training returned the hemodynamic changes to sedentary levels.

▶ Deconditioning is a vital part of any rehabilitation program, including cardiac rehabilitation. This landmark article provides basic support for endurance training regimens. This type of regimen should now be applied in a similar manner to clinical situations. As much as possible in the future, deconditioning therapy should be identified explored and treated.—P.E. Kaplan, M.D.

High-Intensity Exercise Training Increases Vascular Transport Capacity of **Rat Hindquarters**

Sexton WL, Korthuis RJ, Laughlin MH (Univ of Missouri-Columbia) Am J Physiol 254:H274-H278, February 1988

1 - 3

Vascular flow capacity has been reported to be increased with exercise training, although this notion is controversial. Some researchers contend that flow capacity is unchanged or even decreased in trained individuals. A study was conducted to determine whether high-intensity exercise training increases the vascular flow capacity and capillary exchange capacity in isolated rat hindquarters.

Twenty male Sprague-Dawley rats underwent 6 bouts of alternating running and recovery 5 days a week at 60 m per minute on a 15% grade for 6-10 weeks. A second group of 20 rats was confined to cages. Isolated, maximally dilated hindquarters perfused with an artificial plasma consisting of a Tyrode's solution containing 5 gm/100 ml of albumin were studied. Vascular flow capacity was assessed by measuring perfusate flow rate at 4 different perfusion pressures. Capillary exchange capacity was assessed by measuring the capillary filtration coefficient. Training efficacy was demonstrated by significant increases in succinate dehydrogenase activity in the white vastus lateralis and vastus intermedius muscles. Total hindquarter flow capacity increased 50% to 100% in trained rats. This increased flow capacity was associated with an elevation in the capillary filtration coefficient in the maximally vasodilated hindquarters, suggesting that the capillary exchange capacity was elevated with high-speed exercise training.

It is concluded that high-intensity exercise training produces an increase in vascular transport capacity of rat hindquarters skeletal muscle by elevating both capillary exchange capacity and vascular flow capacity.

▶ A basic axiom in applied physiology is that elucidated physiologic processes derived from animal investigation also apply to that other mammal, man. This animal experiment does indicate that, in these rats, some increase in vascular transport capacity probably occurred after training. Can this process be confirmed in man? Is this adaptation species-specific to these rats? Do other processes modify the total outcome in man?—P.E. Kaplan, M.D.

Motor Drive and Metabolic Responses During Repeated Submaximal Contractions in Humans

Vøllestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B (Natl Inst of Occupational Health, Oslo; John B Pierce Found Lab, New Haven, Conn) *J Appl Physiol* 64:1421–1427, April 1988

Contractile failure during various types of exercise has been ascribed to intramuscular metabolic alterations. The temporal changes in force-generating capacity and metabolic state during intermittent isometric contractions in human beings were studied.

One-legged quadriceps contractions at 30% maximum voluntary contraction (MVC) were done for 6 seconds, with 4 seconds of rest between. The decrease in force-generating capacity was tested from brief MVCs and short bursts of 50-Hz stimulation applied at 5-minute intervals. After 1 minute of exercise, the MVC force declined linearly and parallel to the 50-Hz stimulation force, indicating that the contractile failure was caused by intramuscular processes. After 30 minutes of exercise, the MVC force declined by about 40%, compared with the value after 1 minute.

Two-legged contractions were then studied. Muscle biopsy specimens obtained after 5, 15, and 30 minutes of exercise showed only minor changes in the concentrations of glycogen, lactate, creatine phosphate, and adenosine triphosphate. At exhaustion, however, the concentrations of creatine phosphate and glycogen were decreased by 73% and 32%, respectively, and muscle lactate concentration increased to 4.8 mmole/kg wet weight.

The gradual decline in force-generating capacity was not caused by lactacidosis or lack of substrates for resynthesis of adenosine triphosphate. It must have resulted from excitation-contraction coupling failure. Exhaustion was closely related to phosphagen depletion without significant lactacidosis.

▶ This study was an attempt to modify the usual experimental conditions applied toward the study of muscular fatigue. Fatigue and exhaustion, however, are trendmendously complex, multifactorial processes. They act and interact through time to produce the demonstrated weakening. Would application of positron emission tomography scan technology help elucidate the metabolic mechanisms?—P.E. Kaplan, M.D.

Kinetics of Heart Rate Responses to Exercise

Bunc V, Heller J, Leso J (Charles Univ, Prague) J Sports Sci 6:39–48, Summer 1988

1 - 5

The simplest and most commonly used way to assess the degree of adaptation to a bout of exercise and to test the functional circulatory capacity is to determine the kinetics of the heart rate (HR) response during and after exercise. To describe the kinetics of the reaction of the HR to the onset of exercise of constant intensity, the half-time of HR can be used.

Trained and untrained individuals were studied to test the hypotheses that the kinetics of HR response to exercise may be used for assessing functional capacity, and that the point at which HR departs from linearity in incremental exercise tests coincides with ventilatory threshold.

In a study of exercise of an intensity corresponding to 2 W/kg on a cycle ergomotor, half-time in 15 trained male rowers and 11 untrained men was determined. Half-time was smaller in the trained than in the untrained men. In both groups, half-time was positively correlated with resting HR and negatively correlated with maximal oxygen uptake. In another study, 28 trained male long-distance runners were tested on a treadmill and 17 untrained men were tested on a cycle ergometer using a continuous incremental protocol. The ventilatory threshold was determined from the dependence of $\dot{V}_{\rm E}$ on $\dot{V}_{\rm O_2}$, $\dot{V}_{\rm CO_2}$, or both. The $\dot{V}_{\rm O_2}$, HR, and exercise intensity at threshold were compared with the parameters determined from the dependence of HR on exercise intensity. There were no significant differences between ventilatory threshold and HR break point levels.

From the first study, it is concluded that the regulation of HR in the transition range is very similar to the regulation of $\dot{V}O_2$ and energy requirements. From the second study, it is concluded that the HR break point level coincides with ventilatory threshold.

▶ Two rather deceptive, difficult obstacles remain to successful conclusion of this study. Even though the pulse is an easy and direct method of testing stress, it is not necessarily the most accurate way of determining heart work, especially in a patient with coronary artery disease. Second, positive results are not really supported by negative data. The concept, however, of exploring pulse response to exercise in a detailed and accurate manner is interesting. This study should be modified and repeated.—P.E. Kaplan, M.D.

A Comparison of Additional Heart Rates During Active Psychological Challenge Calculated From Upper Body and Lower Body Dynamic Exercise

Turner JR, Carroll D, Hanson J, Sims J (Univ of Birmingham, Birmingham, En-

Psychophysiology 25:209-216, March 1988

1 - 6

Recent studies in which heart rate, cardiac output, and oxygen consumption (VO₂) were measured continuously during psychological challenge and graded physical exercise found that actual cardiac activity during stressful psychological challenges was significantly greater than predicted, thus suggesting a suprametabolic or additional cardiac activity during stressful mental tasks. Most of those studies used dynamic lower body rather than dynamic upper body exercise as the basis for measuring additional cardiac activity.

The Heart rate, VO2, and blood pressure were measured during 2 stressful mental tasks and during an upper body and a lower body graded

Fig 1-1.—Heart rate and oxygen consumption for 2 patients during both upper body (UB) and lower body (LB) graded isotonic exercise and task baseline and condition periods. Also shown are regression lines for exercise data with dashed lines indicating 2 SEs. (Courtesy of Turner JR, Carroll D, Hanson I, et al: Psychophysiology 25:209-216, March 1988.)

dynamic exercise task. Participating were 22 healthy males aged 16–28 years, each of whom performed an 8-minute mental arithmetic task, played a video game, and performed graded upper and lower body exercise tasks on an exercise machine (consisting of 3 increasing work loads for 4 minutes each).

The actual heart rate and systolic blood pressure during the mental arithmetic task and the video game were substantially increased. The heart rate was significantly higher than the predicted rate, thus confirming a considerable additional heart rate. There was no significant difference between the additional heart rate generated from the upper body and the lower body graded exercise tasks (Fig 1-1). These findings are in agreement with those of earlier dynamic exercise studies.

▶ This confirmatory series of studies documents 1 of the additional complexities in writing exercise prescriptions for people with coronary artery disease. If physical activity is limited in patients with advanced disease states, won't that limitation itself generate emotional and mental stress? Moreover, won't that emotional and mental stress be of such an order as to obviate the need for the limitation of physical activity? This riddle is true of people with advanced heart disease and amputations and people with advanced heart disease and strokes. This situation is also found when sexual activities are in question.—P.E. Kaplan. M.D.

Buller NP, Poole-Wilson PA (Cardiothoracic Inst. London: Natl Heart Hosp, Lon-

Br Heart J 59:212-217, February 1988

1 - 7

The lack of an objective and effort-independent measure of cardiorespiratory functional reserve is an important problem in evaluation of patients with chronic heart failure. In an attempt to obtain an objective measurement of cardiorespiratory functional reserve that is independent of exercise duration a mathematical model for analyzing respiratory gas exchange during treadmill exercise was developed.

Six healthy volunteers, 3 men and 3 women aged 25-33 years, and 12 men and 8 women aged 29-65 years with stable chronic heart failure underwent exercise testing by the modified Bruce protocol. Respiratory gas exchange was measured during maximal exercise by standard technique. A mathematical equation curve was used to model the relation between the rates of oxygen consumption and production of carbon dioxide. The maximal value of the equation curve was calculated and termed the extrapolated maximal oxygen consumption.

All exercise tests were performed without complications. The calculated extrapolated maximal oxygen consumption rates correlated closely with the maximal rates of oxygen consumption during exercise (Fig 1-2). Because the extrapolated maximal oxygen consumption is relatively independent of actual exercise duration, its use may avoid the spurious variation in measured exercise capacity that results from differences in a patient's motivation or a supervisor's encouragement. However, calculation of the extrapolated maximal oxygen consumption should not be used as a replacement for measuring actual maximal oxygen consumption; it

Fig 1-2.—Degree of dependence of measured oxygen consumption (solid circles) and extrapolated maximal oxygen consumption (solid squares) on exercise duration. Values are mean for all 26 subjects. Bars represent 1 SD. (Courtesy of Buller NP, Poole-Wilson PA: Br Heart I 59:212-217, February 1988.)