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Preface

Engineering is the integration of art and science and involves the use of systematic knowledge based on the
principles of mathematics and the physical sciences to design and develop systems that have direct practical
applicability for the benefit of mankind and society. With this philosophy in mind, the importance of the
engineering sciences becomes obvious, and this is especially true for the biomedical aspects, where the
implications are easily identifiable. Of all the engineering sciences, biomedical engineering is considered
to be the broadest. Its practice frequently involves the direct combination of the core engineering sciences,
such as mechanical, electrical, and chemical engineering, and requires a functional knowledge of other
nonengineering disciplines, such as biology and medicine, to achieve effective solutions. It is a multidis-
ciplinary science with its own core aspects, such as biomechanics, bioinstrumentation, and biomaterials,
which can be further characterized by a triage of subject matter. For example, the study of biomechanics,
or biological mechanics, employs the principles of mechanics, which is a branch of the physical sciences
that investigates the effects of energy and forces on matter or material systems. It often embraces a broad
range of subject matter that may include aspects of classical mechanics, material science, fluid mechanics,
heat transfer, and thermodynamics, in an attempt to model and predict the mechanical behaviors of any
living system. As such, it may be called the “liberal arts” of the biomedical engineering sciences.

Biomechanics is deeply rooted throughout scientific history and has been influenced by the research
work of early mathematicians, engineers, physicists, biologists, and physicians. Not one of these disciplines
can claim sole responsibility for maturing biomechanics to its current state; rather, it has been a conglom-
eration and integration of these disciplines, involving the application of mathematics, physical principles,
and engineering methodologies, that has been responsible for its advancement. Several examinations exist
that offer a historical perspective on biomechanics in dedicated chapters within a variety of biomechanics
textbooks. For this reason, a historical perspective is not presented within this introduction and it is left
to the reader to discover the material within one of these textbooks. As an example, Y.C. Fung (1993)
provides a reasonably detailed synopsis of those who were influential to the progress of biomechanical
understanding. A review of this material and similar material from other authors commonly shows that
biomechanics has occupied the thoughts of some of the most conscientious minds involved in a variety of
the sciences.

Leonardo da Vinci, one of the early pioneers of biomechanics, was the first to introduce the principle of
“cause and effect” in scientific terms as he firmly believed that “there is no result in nature without a cause;
understand the cause and you will have no need of the experiment” (1478—1518). Leonardo understood
that experimentation is an essential tool for developing an understanding of nature’s causes and the results
they produce, especially when the cause is not immediately obvious. The contemporary approach to
understand and solve problems in engineering expands upon Leonardo’s principle and typically follows a
sequence of fundamental steps that are commonly defined as observation, experimentation, theorization,
validation, and application. These steps are the basis of the engineering methodologies and their significance
is emphasized within a formal engineering education, especially in biomedical engineering. Each step is
considered to be equally important, and an iterative relationship between steps, with mathematics serving
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as the common link, is often necessary in order to converge on a practical understanding of the system in
question. An engineering education that ignores these interrelated fundamentals will produce engineers
who are ignorant of the ways in which real-world phenomena differ from mathematical models. Since most
biomechanical systems are inherently complex and cannot be adequately defined using only theory and
mathematics, biomechanics should be considered a discipline whose progress relies heavily on research
and experimentation and the careful implementation of the sequence of steps. When a precise solution
is not obtainable, utilizing this approach will assist with identifying critical physical phenomena and
obtaining approximate solutions that may provide a deeper understanding as well as improvements to the
investigative strategy. Not surprisingly, the need to identify critical phenomena and obtain approximate
solutions seems to be more significant in biomedical engineering than any other engineering discipline,
which can be attributed to the complex biological processes involved.

Applications of biomechanics have traditionally focused on modeling the system-level aspects of the
human body, such as the musculoskeletal system, the respiratory system, and the cardiovascular and
cardiopulmonary systems. Technologically, most of the progress has been made on system-level device
development and implementation, with obvious influences on athletic performance, work environment
interaction, clinical rehabilitation, orthotics, prosthetics, and orthopaedic surgery. However, more recent
biomechanics initiatives are now focusing on the mechanical behaviors of the biological subsystems, such
as tissues, cells, and molecules, in order to relate subsystem functions across all levels by showing how
mechanical function is closely associated with certain cellular and molecular processes. These initiatives
have a direct impact on the development of biological nano- and microtechnologies involving polymer
dynamics, biomembranes, and molecular motors. The integration of system and subsystem models will
advance our overall understanding of human function and performance and further develop the prin-
ciples of biomechanics. Even still, our modern understanding about certain biomechanic processes is
limited, but through ongoing biomechanics research, new information that influences the way we think
about biomechanics is generated and important applications that are essential to the betterment of human
existence are discovered. As a result, our limitations are reduced and our understanding becomes more
refined. Recent advances in biomechanics can also be attributed to advances in experimental methods and
instrumentation, such as computational power and imaging capabilities, which are also subject to constant
progress.

The rapid advance of biomechanics research continues to yield a large amount of literature that exists in
the form of various research and technical papers and specialized reports and textbooks that are only acces-
sible in various journal publications and university libraries. Without access to these resources, collecting
the publications that best describe the current state of the art would be extremely difficult. With this in
mind, this textbook offers a convenient collection of chapters that present current principles and appli-
cations of biomechanics from respected published scientists with diverse backgrounds in biomechanics
research and application. A total of 20 chapters is presented, 12 of which have been substantially updated
and revised to ensure the presentation of modern viewpoints and developments. The chapters within this
text have been organized in an attempt to present the material in a systematic manner. The first group
of chapters is related to musculoskeletal mechanics and includes hard and soft tissue mechanics, joint
mechanics, and applications related to human function. The next group of chapters covers several aspects
of biofluid mechanics and includes a wide range of circulatory dynamics, such as blood vessel and blood
cell mechanics, and transport. It is followed by a chapter that introduces current methods and strategies
for modeling cellular mechanics. The next group consists of two chapters introducing the mechanical
functions and significance of the human ear. Finally, the remaining two chapters introduce performance
characteristics of the human body system during exercise and exertion. It is the overall intention of this
text to serve as a reference to the skilled professional as well as an introduction to the novice or student
of biomechanics. An attempt was made to incorporate material that covers a bulk of the biomechanics
field; however, as biomechanics continues to grow, some topics may be inadvertently omitted causing a



disproportionate presentation of the material. Suggestions and comments from readers are welcomed on
subject matter that should be considered in future editions of this textbook.

Through the rationalization of biomechanics, I find myself appreciating the complexity and beauty of
all living systems. I hope that this textbook helps your understanding of biomechanics and your discovery
of life.

Donald R. Peterson, Ph.D., M.S.
University of Connecticut Health Center
Farmington, Connecticut
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Hard tissue, mineralized tissue, and calcified tissue are often used as synonyms for bone when describ-
ing the structure and properties of bone or tooth. The hard is self-evident in comparison with all other
mammalian tissues, which often are referred to as soft tissues. Use of the terms mineralized and calcified
arises from the fact that, in addition to the principle protein, collagen, and other proteins, glycoproteins,
and protein-polysaccherides, comprising about 50% of the volume, the major constituent of bone is a
calcium phosphate (thus the term calcified) in the form of a crystalline carbonate apatite (similar to
naturally occurring minerals, thus the term mineralized). Irrespective of its biological function, bone is
one of the most interesting materials known in terms of structure—property relationships. Bone is an
anisotropic, heterogeneous, inhomogeneous, nonlinear, thermorheologically complex viscoelastic mate-
rial. It exhibits electromechanical effects, presumed to be due to streaming potentials, both in vivo and
in vitro when wet. In the dry state, bone exhibits piezoelectric properties. Because of the complexity of
the structure—property relationships in bone, and the space limitation for this chapter, it is necessary to
concentrate on one aspect of the mechanics. Currey [1984] states unequivocally that he thinks, “the most
important feature of bone material is its stiffness.” This is, of course, the premiere consideration for the
weight-bearing long bones. Thus, this chapter will concentrate on the elastic and viscoelastic properties
of compact cortical bone and the elastic properties of trabecular bone as exemplar of mineralized tissue
mechanics.

1-1



1-2 Biomechanics

1.1 Structure of Bone

The complexity of bone’s properties arises from the complexity in its structure. Thus it is important to
have an understanding of the structure of mammalian bone in order to appreciate the related properties.
Figure 1.1 is a diagram showing the structure of a human femur at different levels [Park, 1979]. For
convenience, the structures shown in Figure 1.1 will be grouped into four levels. A further subdivision
of structural organization of mammalian bone is shown in Figure 1.2 [Wainwright et al., 1982]. The
individual figures within this diagram can be sorted into one of the appropriate levels of structure shown
on Figure 1.1 as described in the following. At the smallest unit of structure we have the tropocollagen
molecule and the associated apatite crystallites (abbreviated Ap). The former is approximately 1.5 by
280 nm, made up of three individual left-handed helical polypeptide (alpha) chains coiled into a right-
handed triple helix. Ap crystallites have been found to be carbonate-substituted hydroxyapatite, generally
thought to be nonstoichiometric. The crystallites appear to be about 4 x 20 x 60 nm in size. This level is
denoted the molecular. The next level we denote the ultrastructural. Here, the collagen and Ap are intimately
associated and assembled into a microfibrilar composite, several of which are then assembled into fibers
from approximately 3 to 5 wm thick. At the next level, the microstructural, these fibers are either randomly
arranged (woven bone) or organized into concentric lamellar groups (osteons) or linear lamellar groups
(plexiform bone). This is the level of structure we usually mean when we talk about bone tissue properties.
In addition to the differences in lamellar organization at this level, there are also two different types of
architectural structure. The dense type of bone found, for example, in the shafts of long bone is known as
compact or cortical bone. A more porous or spongy type of bone is found, for example, at the articulating
ends of long bones. This is called cancellous bone. It is important to note that the material and structural
organization of collagen-Ap making up osteonic or haversian bone and plexiform bone are the same as
the material comprising cancellous bone.

Articular
[A\ cartilage

= &5
Oste4 Collagerﬁ;,
\

Periostoeum —
e Conce@ .’)@)
lamella 4
Nutrient Haversian (3—7 Mm) Apatite
artery canal mineral crystals
Intramedullary (200-400 A long)
covity

Line of
epiphyseal
fusion

FIGURE 1.1 Hierarchical levels of structure in a human femur [Park, 1979]. (Courtesy of Plenum Press and
Dr. ].B. Park.)
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FIGURE 1.2 Diagram showing the structure of mammalian bone at different levels. Bone at the same level is drawn
at the same magnification. The arrows show what types may contribute to structures at higher levels [Wainwright et al.,
1982]. (Courtesy Princeton University Press.) (a) Collagen fibril with associated mineral crystals. (b) Woven bone. The
collagen fibrils are arranged more or less randomly. Osteocytes are not shown. (c) Lamellar bone. There are separate
lamellae, and the collagen fibrils are arranged in “domains” of preferred fibrillar orientation in each lamella. Osteocytes
are not shown. (d) Woven bone. Blood channels are shown as large black spots. At this level woven bone is indicated
by light dotting. (e) Primary lamellar bone. At this level lamellar bone is indicated by fine dashes. (f) Haversian bone.
A collection of Haversian systems, each with concentric lamellae round a central blood channel. The large black area
represents the cavity formed as a cylinder of bone is eroded away. It will be filled in with concentric lamellae and form
a new Haversian system. (g) Laminar bone. Two blood channel networks are exposed. Note how layers of woven and
lamellar bone alternate. (h) Compact bone of the types shown at the lower levels. (i) Cancellous bone.

Finally, we have the whole bone itself constructed of osteons and portions of older, partially destroyed
osteons (called interstitial lamellae) in the case of humans or of osteons and/or plexiform bone in the
case of mammals. This we denote the macrostructural level. The elastic properties of the whole bone results
from the hierarchical contribution of each of these levels.



1-4 Biomechanics

TABLE1.1 Composition of Adult Human and Bovine Cortical Bone

% Dry Weight
Species % H,0 Ap Collagen GAG? Reference
Bovine 9.1 76.4 21.5 N.D.} Herring, 1977
Human 7.3 67.2 21.2 0.34 Pellagrino and Blitz, 1965; Vejlens, 1971

2 Glycosaminoglycan.
b Not determined.

1.2 Composition of Bone

The composition of bone depends on a large number of factors: the species, which bone, the location
from which the sample is taken, and the age, sex, and type of bone tissue, for example, woven, cancellous,
cortical. However, a rough estimate for overall composition by volume is one-third Ap, one-third collagen
and other organic components, and one-third H,O. Some data in the literature for the composition of
adult human and bovine cortical bone are given in Table 1.1.

1.3 Elastic Properties

Although bone is a viscoelastic material, at the quasi-static strain rates in mechanical testing and even at the
ultrasonic frequencies used experimentally, it is a reasonable first approximation to model cortical bone
as an anisotropic, linear elastic solid with Hooke’s law as the appropriate constitutive equation. Tensor
notation for the equation is written as:

0ij = Cijuén (1.1)

where o;; and &y are the second-rank stress and infinitesimal second-rank strain tensors, respectively, and
Ciju is the fourth-rank elasticity tenor. Using the reduced notation, we can rewrite Equation 1.1 as

0, =Cyej i,j=1t06 (1.2)

where Cj; are the stiffness coefficients (elastic constants). The inverse of the Cy, the Sj;, are known as the
compliance coefficients.

The anisotropy of cortical bone tissue has been described in two symmetry arrangements. Lang [1969],
Katz and Ukraincik [1971], and Yoon and Katz [1976a, b] assumed bone to be transversely isotropic with
the bone axis of symmetry (the 3 direction) as the unique axis of symmetry. Any small difference in elastic
properties between the radial (1 direction) and transverse (2 direction) axes, due to the apparent gradient
in porosity from the periosteal to the endosteal sides of bone, was deemed to be due essentially to the
defect and did not alter the basic symmetry. For a transverse isotropic material, the stiffness matrix [Cy]
is given by

[Ch Cip Ciz O
Cp Cu Ci5 0

Cis Ci3 Cs O

o O o © O

10 0 0 0 0 Ces

where Cgs = %(C 11 — C12). Of the 12 nonzero coefficients, only 5 are independent.
However, Van Buskirk and Ashman [1981] used the small differences in elastic properties between the
radial and tangential directions to postulate that bone is an orthotropic material; this requires that 9 of



