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PREFACE

' Ju American universities a course covering roughly the material in this
book is ordinarily given in the first gtradua.te year. The way of pre-
senting the material differs widely: in some schools the emphasis is on
tea /hing a certain indispensable amount of classical function theory; in
othrrs the course is used to confront the student, for the first time, with
mathématical rigor. In Harvard,for instance, the course isalso tra.dltlon-
ally used to review advanced ca.lculus with complete rigor in view.

The author’s ambition has been to write a text whieh is at once concise
and rigorous, teachable and readable. Such a goal cannot be reached, .
it.can only be approximated, and the author is aware of many short-
comings. : No attempt has been made to make the book self-contained.
On the contrary, a basic knowledge of real numbers and calculus, includ-
ing the definition and propertxessof definite integrals, is taken for granted.
Questions concerning limits and contmuxty are reviewed in connection
with their application to wmplex numbers, and an effort is made not to
rely on results which in elementary teaching are commonly derived in a

_sloppy or insufficient manner. If the teacher decides that real numbers
or-the definition of integral should be included in his course, there are a
dozen or so reliable texts that he can consult. The author has oxmtted
these topics mainly to keep down the bulk of this volume.

Even apart from the starting point, the writer of a textbook has a
difficult task in decidmg what to include and what to omit. The present
author has wished to give the reader a solid foundation in classical com-
plex-function theory by emphasizing the general principles on which it
rests. He believes that a person who is thoroughly inculeated with the
fundamental methods will not expenence any new difficulty if he wishes
to go on to a specialized topic in funetion theory. Nevertheless, it is
with great regret that the author has omitted, for instance, the theory of
elhptlc functions. One of the main reasons is that it is hardly pomble
to improve on the beautiful treatment in E. T. Copson’s book (An
Introduction to the Theory of Functions of 8 Complex Vanable e
London, 1935).

In the opposite direction some topics have been mcluded which are
usually not felt to be part of elementary function theory. Such is the
‘éase with the theory of subharmonic function and Perron’s method for
solving the Dirichlet problem, which are certainly as elementary as they
are important.

i



iv PREFACE

The book begins with an elementary diseussion of complex numbers and
ends up on a note of sophistication with the theory of multiple-valued
analytic functions. In between, the progress is gradual. From his
venerated teacher, Ernst Lindelsf, the author has learned to postpone
the use of complex integration until the student is entirely familiar with
the mapping properties of analytic functions. Geometric visualization
is a source of knowledge-as well as a didactic tool whose value cannot be
disputed. ‘ =2

There are many other acknowledgments to be made. For instance,
the appearance of Carathéodory’s “Funktionentheorie”’ has, of course,
not been without influence on the final form of this manuseript, which ¥as
half-finished at the time. Above all, the author has adopted withbut
significant change E. Artin’s splendid idea of basing homology theory on
the notion of winding number. This approach makes it possible ‘to
present a complete and rigorous proof of Cauchy’s theorem and all its
immediate applications with a minimum amount of topology. Of course,
to by-pass topology is no merit in itself, but in a book on function theory
it is highly desirable to concentrate on that part of topology which is
truly basic in the study of analytic functions. For the same reason
no proof is included of the Jordan curve theorem, which, to the author’s
knowledge, is never needed in function theory. A

The exercises in the book are to be taken as samples. The author has
not had the inclination to relieve the teacher from making up more and
better exercises; it is for him to decide what methods should be drilled,
what alternative proofs the student should be asked to give, and what
ingenuity he should be given the opportunity to show. It is to be hoped
that no teacher will follow this book page by page, for nothing could be
more deadening. A text is a guide for the teacher which saves him from
the necessity of making up a detailed plan in advance, but the continuous
contact with his class makes him the authority on desirable deviations
and cuts.

One more point: the author makes abundant and unblushing use of the
words clearly, obviously, evidently, etc. They are not used to blur the
picture. On the contrary, they test the reader’s understanding, for if
he does not agree that the omitted reasoning is clear, obvious, and evi-
dent, he had better turn back a few pages and make a fresh start. “There
are also a few places, easily spotted,in which a voluntary gap serves the
-purpose of saving half a page of unconstructive and dull reasoning.

Lars V. Ahlfors
Winchester, Mass.
January, 1953
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CHAPTER I

COMPLEX NUMBERS
1. The Algebra of Complex Numbers

Tt is fundamental that real and complex numbers obey the same basic
laws of arithmetic. We begin our study of complex function theory by
- stressing and implementing this analogy.

1.1. Arithmetic Operations. From elementary algebra the reader is
acquainted with the imaginary unit ¢ with the property i = —1. If
the imaginary unit is combined with two real numbers a, B8 by the proc-
esses of addition and multiplication, we obtain a complex number o + 1.
a and 8 are the real and imaginary part of the complex number. If

= 0, the number is said to be purely imaginary; if B = 0, it is of course
real. Zero is the only number which is at once real and purely imaginary.
Two complex numbers are equal if and only if they have the same real
part and the same imaginary part.

Addition and multiplication do not lead out from the system of com-

plex numbers. Assuming that the ordinary rules of arithmetic apply to
complex numbers we find indeed

) (@ + i) + (v +18) = (a + 7) + (8 + 5)

and
(2) (a + 18)(v + 18) = (ay — BS) + i(a§ + B).
In the second identity we have made use of the relation i2 = — 1.

- It is less obvious that division is also possible. We wish to show that
(e + 48)/(v + 48) is a complex number, provided that vy+126 #0. If
the quotient is denoted by z + %y, we must have

o+ 18 = (v + 28)(z + iy).
By (2) this condition can be written :
a+if = (yz — &y) + i(dz + 'ry);
and we obtain the two equations
e — &y
o + vy

a
8
1



2 COMPLEX ANALYSIS

This system of simultaneous linear equations has the unique solution
g 2y 1B
‘Y’ + 62
By ~ ad
VRS

for we know that v* -+ 37 is not zero. We have thus the result -

. a+i8 _ay+p5 , Py —ab
@ i TR TR b e

Once the existence of the quotient has been proved, its' v@lue_ can be
found in & simpler way. = If numerator and denominstor are multiplied
with ¥ — 15, we find at once .

at B _ (a+iB)(y—~ i) _ (av + B5) + i(By — as)
v+ (v + i)y — ) v + 8

As a special case the reciprocal of a complex number < 0 is given by

1 a—1if -

a+iB o+ |
. We note that ¢ has only four possible values: 1, 4,—1, —i.. They
correspond to values of n which divided by 4 leave the remainders 0, 1,
2, 8. :

, EXERCISES
1. Find the values of
; - . i} 2 4 1\2 " s loue
(1 + 2:)3, ¥ 8-2)’ (A 4+ F (1 — )=,

2. Ifz=z+iy(zandyreal), find the real and imaginary parts of

% e ) 1

» ;-;

z+1.

1
8‘, -y
z

3. Show that
. 3 . L
(,‘,1 L \/5) 20T akd (:l_:l & \/5) -l

for all combinations of signs.

1.2, Square Roots. We shall now show that the square root of a
complex number can be found explicitly. If the given number is a + 18, -
we are looking for a number z + 4y such that

(= + 1) = a + 8.
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This is equivalent with the system of equations

(1

@ T 3

2xy

From these equations we obtain
(2 + gt = (@ = ) + P =@
Hence we must have
R Yy )
where the square root is positive or zero. Together with the first equa-
tion (4) we find
2 e = Y VETR
‘ ¥ = H(—a+ Vot +B).

Observe that these quantities are positive or zero regardless of the sign
of a. ,

The equations (5) yield, in general, two opposite values for z and two
for y. But these values cannot be combined arbitrarily, for the second
equation (4) is not a consequence of (5). We must therefore be careful

to select = and y so that their product has the sign of 8. This leads to
the general solution

© VaTtiB=z \/Wﬂﬂgnp)i\f‘““" ‘2/“’+"'),

where sign 8 = +1 according as 8> 0 or 8 < 0. For = 0 the value
of sign 8 does. not matter in our formula, but it is customary to set
sign 0 = 0. It is understood that all square roots of positive numbers
are taken with the positive sign,

We have found that the square root of any complex number exists
and has $wo opposite values. They coincide only if & + 8 = 0. They
are real if 8 = 0, « = 0 and purely imaginary if 8 = 0,a = 0. Inother

words, except for zero only positive numbers have real square roots and

only negative numbers have purely imaginary square roots.

Since both square roots are in general complex, it is not possible to dis-
tinguish between the positive and negative square root of a complex num-
. ber. ' We could of course distinguish between the upper and lower sign

in (8), but this distinction is artificial and should be avoided. The cor-
rect way is to treat both square roots in a symmetric manner. '

EXERCISES

R V4 SR V= GV g i J V—-—-——l = ; V3,
2. Find the four values of v/ —1.

1. Compute



4 COMPLEX ANALYSIS

3. Compute v/ and v/ —1. _

4. Solve the quadratic equation -

22+ (¢ +128)z + v + 18 =0.

“1.3. Justification. So far our approach to complex numbers has been
completely uncritical. We have not questioned the existence of a number
system in which the equation 22 4 1 = 0 has a solution while all the rules
of arithmetic remain in force.

We begin by recalling the characteristic properties of the real-number
system which we denote by R. In the first place, R is a field. This
means that addition and multiplication are defined, satisfying the associ-
ative, commutative, and distributive laws. The numbers 0 and 1 are neu-
tral elements under addition and multiplication, respectively: a« + 0 = a,
a1 = a for all . Moreover, the equation of subtraction 8 + 2 = «
has always a solution, and the equation of division 8z = « has a solution
whenever 8 # 0.1

One shows by elementary reasoning that the neutral elements and the
results of subtraction and division are unique. Also, every field is an
integral domain: of = 0 if and only if a = 0or g8 = 0.

These properties are common to all fields. ~ In addition, the field % has
an order relation a < B8 (or B > ). It is most easily defined in terms of
the set R+ of positive real numbers: « < Bif and only if 8 — a € R*+. The
set M+ is characterized by the following properties: (1) 0 is not a positive
number; (2) if @ 0 either a or —a is positive; (3) the sum and the prod-
uct of two positive numbers are positive. From these conditions one
derives all the usual rules for manipulation of inequalities. In particular
one finds that every square «? is either positive or zero; therefore 1 = 12
is a positive number.

By virtue of the order relation thesums 1, 1'+ 1,1 + 141, . . . are
all different. Hence % contains the natural numbers, and since it is a
field it must contain the subfield formed by all rational numbers.

Finally, R satisfies the following completeness condition: every increasing
and bounded sequence of real numbers has a limit. Let oy < as < az <
«++ < a, < - -+ ,and assume the existence of a real number B such
that a, < B for all n. Then the completeness condition requires the
existence of a number A = lim, .. @, with the following property: given
any ¢ > O there exists a natural number nosuchthat 4 — e < ay < 4 for
all n > n,.

Qur discussion of the real-number system is incomplete inasmuch as
we have not proved the existence and uniqueness (up to isomorphisms) of

1 We assume that the reader has a working knowledge of elementary algebra.
Although the above characterization of a field is complete, it obviously does not

convey much to a student who is not already at least vaguely familiar with the
concept.
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a system R with the postulated properties.t The student who is not
thoroughly familiar with one of the constructive processes by which real
numbers can be introduced should not fail to fill this gap by consulting any
textbook in which a full axiomatic treatment of real numbers is given.

The equation 22 4+ 1 = 0 has no solution in R, for a® 4+ 1 is always
positive. Suppose now that a field § can be found which contains R as a
subfield, and in which the equation x? 4 1 = 0 can be solved. Denote a
solution by 4. Then 22+ 1 = (x + 2)(x — 7), and the equation
z2 4+ 1 = 0 has exactly two roots in §, 2 and —4. Let € be the subset of
& consisting of all elements which can be expressed in the form o« -+ 78
with real « and B. This representation is unique, for a« + 18 = o’ + i’
implies @« — &' = ——i(B B’); hence (e — a')2 = — (B — B')?, and this is
possible only if « = o/, 8 = .

The subset € is a subﬁeld of §. Infaet, except for tnvml verifications
which the reader is asked to carry out, this is exactly what was shown in
Sec. 1.1. What is more, the structure of € is independent of §. For if
%’ is another field containing R and a root #’ of the equation z* + 1 = 0,
the corresponding subset €’ is formed by all elements a + ’8. Thereis
a one-to-one correspondence between € and €’ which associates « + 18
and « + ¢'8, and this correspondence is.evidently a field isomorphism.
It is thus demonstrated that € and ¢’ are isomorphiec.

We now define the field of complex numbers to be the subfield € of an
arbitrarily given §§. We have just seen that the choice of § makes no
difference, but we have not yet shown that there exists a field § with the
required properties. In order to give our definition a meaning it remains
to exhibit a field § which contains R (or a subfield isomorphic with )
and in which the equation 22 4 1 = 0 has a root.

There are many ways in which such a field can be constructed. The
simplest and most direct method is the following: Consider all expressions
of the form a + 8 where a, 8 are real numbers while the signs 4+ and 7 are
pure symbols (4 does not indicate addition, and 7 is not an element of a
field). These expressions are elements of a field § in which addition and
multiplication are defined by (1) and (2) (observe the two different mean-
ings of the sign 4). The elements of the particular form a + 70 are seen
to constitute a subfield isomorphic to R, and the element 0 71 satisfies
the equation #? + 1 = 0; we obtain in fact (0 + 71)2 = —(1 -+ 70).
The field § has thus the required properties; moreover, it is identical with
the corresponding subfield €, for we can write

a+ i = (a + 10) + B0 + 71).

1 An isomorphism between two fields is a one-to-one correspondence which preserves
sums and products. The word is used quite generally to indicate a correspondence
which is one to one and preserves all relations that are considered important in a
given connection.
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The existence of the complex-number field is now proved, and we can go
back to the simpler notation « + 8 where the -~ indicates addition in €
and ¢ is & root of the equation 22 4+ 1 = Q.

EXERCISES (For Students with a background in algebra).
1. Show that the system of all matrices of the special form

a B
—B a)’
combined by matrix addition and matrix multiplication, is isomorphic to the field

of complex numbers.

2. Show that the complex-number system can be thought of as the field of all poly-
nomials with real coefficients modulo the irreducible polynomial z* + 1.

1.4. Conjugation, Absolute Value. A complex number can be denoted
either by a single letter a, representing an element of the field €, or in the
form & + 48 with real and 8. Other standard notations are z = z + 1y,
$ =&+ 4, w=wu+ 4, and when used in this connection it is tacitly
understood that z, y, & #, 4, v are real numbers. The real and imaginary
part of a complex number @ will also be denoted by Re a, Im a. .

In deriving the rules for complex addition and multiplication we used
only the fact that 4 = —1. Since -4 has the same property, all rules
must remain valid if 4 is everywhere replaced by —i. Direct verification
shows that this is indeed so. The transformation which replaces « + 18
by a — 18 is called complex conjugation, and a — i8 is the conjugate of
@+ 8. The conjugate of a is denoted by @. A number is real if and
only if it is equal to its conjugate. The conjugation is an gnvolutory
transformation: this means that @ = a.

The formulas . '

: Rea=a-2'-a, Ima=a2—id

express the real and imaginary part in terms of the complex number and
its conjugate. By systematic use of the notations a and 4 it is hence
possible to dispense with the use of separate letters for the real and
imaginary part. It is more convenient, though, to make free use of both
notations.

The fundamental property of conjugation is the one already referred
t0, namely, that

- a+b=a+0
ab = a-b.

The corresponding property for quotients is a consequence: if az = b,
then 8% = b, and hence (3/a) = b/a. More generally, let R{abye, . . .)
stand for any rational operation applied to the complex numbers e, b, c,

Then .
Rlade, . . .) = R@be, . . ).
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As an application, ¢onsider the equation

€o2” + c12"t + ¢ ¢ - cpz +Cp = 0.
If { is a root of this equation, then { is a root of the equation
Gzt + 2"l v 0o g2+ & =0

In particular, if the coefficients are real, { and { are roots of the same equa-~
tion, and we have the familiar theorem that the nonreal roots of an equa-
tion with real coefficients occur in pairs of conjugate roots.

The product ad@ = a* + #? is always positive or zero. Its nonnegative
square root is called the modulus or absolute value of the complex number
a;it is denoted by |al. The terminology and notation are justified by the

fa.ct that the mpdulus of a real number coincides with its numerical value
“taken with the positive sign.

We repeat the definition
ad = |al’, ,
where [d[ 2 0, and observe that |@| = |al. For the absolute value of a
product we obtain

, |ab|* = ab - @b = abab = adbb = [a|?|b]?,
and hence

|ab| = |a] - |b]
since both ave = 0. In words:

The absolute value of a product ©8 equal Lo the product of the absolute values
of the factors.

It is clear that this property extends to arbxtrary finite producta
laxaz £ w as} = Ial| lall |a’ﬁl

The quotient a/b, b = 0, satisfies b(a/b) = a, and hence we have also

[b] - |a/b] = |al, or ,

al _-la| .

bl b

The formula for the absolute value of a sum is not as simple. We find
; la + b]? = (¢ + b)(@ + b) = ad + (ab + ba) + bb

or

(7) ja 4+ bj* = |a]® + |b]* + 2 Re ab.
The corresponding formula for the différence is

(™ l&— b|* = |a]? + [b]* — 2 Re ab,

and by addition we obtain the identity
(®) lo + b[* + |o — bJ* = 2(|af* + [b]?).
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EXERCISES
1. Verify by calculation that the values of

Lo X
2241
forz=z+iyandz = z — iy are conjugate.
2. Find the absolute values of
2l : ] (3 + 44)(—1 + %)
2@ + )2 + 4)(1 +9) and (=1 - 9@ =9
3. Prove that

a—b
1—ab

if either || = 1 or |b| = 1. What exception must be made if |a| = |b| = 1?
4. Prove Lagrange’s identity in the complex form i

R ) _ 7'
B oof - S S mr Y s

=1 1s5i<isn

[=1

1.5. Inequalities. We shall now prove some important inequalities
which will be of constant use. It is perhaps well to point out that there
is no order relation in the complex-numbeér system, and hence all inequali-
ties must be between real numbers.

From the definition of the absolute value we deduce the inequalities

©) —la| £ Rea = |q
: —la| = Ima < |a|. !

The equality Re a = |a| holds if and only if a is real and = 0.
If (9) is applied to (7), we obtain
la + b = (la] + [b])?
and hence
(10) . la + 3] < |a| + [b].

This is called the triangle inequality for reasons which will emerge later.
By induction it can be extended to arbitrary sums:

(11) [al +as+ - - -+ anl = Iall + Iazl + 0o lanl-
- The absolute value of a sum is at most equal to the sum of the absolute
values of the terms. ’

The reader is well aware of the importance of the estimate (11) in the
real case, and we shall find it no less important in the theory of complex
numbers.

Let us determine all cases of equality in (11). In(10)thesign of equality
holds if and only if ab = 0 (it is convenient to let ¢ > 0 indicate that ¢ is
real and positive). If b # 0 this condition can be written in the form
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[b|*(a/b) = 0, and it is hence equivalent with a/b = 0. In the general
case we proceed as follows: Suppose that equality holds in (11); then

las| + laaf + - - - +|anl=|(al+a2)+al+ .+ a
S lag + ao] 4 as] + ¢+ - -+ |aa] S a4 + lael + ¢+ * + + |@a|

Hence |a1 + a:| = |ai] + |aq|, and if a; % 0 we conclude that a,/as = 0.
But the numbering of the terms is arbitrary; thus the ratio of any two
nonzero terms must be positive. Suppose conversely that this condition
is fulfilled. Assuming that a; ¥ 0 we obtain

Pl RS 8

= oy (1 +2p 4 ) los ( o = b H)
= lai] + |aa] + - - - + |aal.

To sum up: the sign of equality holds in (11) if and only <f the ratig of any
lwo nonzero terms is positive.
By (10) we have also

la| = |(a — ) + 38| = |a — b + o]

lax +as + - - - +an = |ay -

or
la] =

For the same reason [b| — |g| £ |a = bl, gnd these inequalities can be
combined to '

(12) la — b = |la| — [b]].
Of course the same estimate can be applied te |a + b|.
A special ease of (10) is the inequality
(13) o + i) = |af + Jal
which expresses that the absolute value of a complex number is at most
equal to the sum of the absolute values of the real and imaginary part.
Many other inequalities whose proof is less immediafe are also of fre-
quent use. Foremost is Cauchy’s inequality which states that
laibs + -+ - ¢ 4 @abal* S (l@a]* + - - - F @D ((0u F ¢ - - - [5al?)
or, in shorter notation, ;

(14) |z a«b.|= < 2 a2 z b2t
To prove it, let A denote an arbitrary complex number. We obtain
by (7)

t ¢ is a convenient summation index and, used as a subscript, cannot be confused
with the imaginary unit. It seems pointlesa to ban its use.
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(15) z o — ABJ? = z lag? + pqa B2 — 2 Re X E @b

t=1 =1

This expression is 2 0 for all A. We can choose

i=1

hﬂ.zafb"

n

2 Ibd? -

1

)

for if the denominator should vanish there is nothing to prove. This
choice is not arbitrary, but it is dictated by the desire to make the
expression (15) as small as possible. Substituting in (15) we find, after

simplifications,
z lad* ~

which is equivalent with (14). .
From (15) we conclude further that the sign of equality holds in (14)
if and only if the a; are proportional te the b;.

Cauchy’s inequality can also be proved by means of Lagrange’s identity
(Sec. 1.4, Ex. 4).

JRI
=0

lb.l2

EXERCISES

a—bl<l

_1. Prove that

if la] < 1 and [b| < 1.
3 2. Prove Cauchy’s mequa.hty by induction. .
3. Ilas <1,N\ 2= 0foré=1, . <o nand M+ M+ % ° 4 A = 1, show that

Niar + Xeas + -0 Aa] < 1L
4. Determine the smallest value of |(z — ¢)(z — b)| whe a, b are given.

2. The Geometric Repregentation of Complex Numbers

With respect to a given recta.ngulw coordinate system in a plane, the
complex number @ = « 4 i# can be represented by the point with coordi-
nates («,8). This representation is constantly used, and we shall often
speak of the point @ as & synonym of the number a. . The first coordinate
axis (z-axis) takes the name of real azis, ind the second coordinate axis

(y-axis) is called the #: zmagmary azis. The plane itself is referred to as the
complex plane.



