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1. Introduction

In this paper we establish several existence theorems for harmonic maps between
Euclidean ellipsoids of the type

Q"(a,b) = {(x,y) € RP™ x RI*':|x|%/a® + |y|*/b* = 1, withp+q+ 1 =n,a,b>0}.

For instance, take p = 1, ¢ = n — 2: we have

Corollary 5.8. If n>3, assume d?/c* > (n— 3)?/4(n —2). Then any map
®o: Q"(c,d) = Q"(c,d) can be deformed to a harmonic map.

Note that for n < 7 we can take d = c, thereby recovering Smith’s theorem [27, 28].
The values n =1, ..., 7, 9 are the only dimensions where the conclusion of Corollary
5.8 is known for Euclidean spheres.

With other methods,

Corollary 6.8. A4 map ¢,: Q"(a,b) = S" of given degree k € Z can be deformed to a
harmonic map, provided that the dilatation b/a is sufficiently small (b/a may depend upon
both n and k).

Corollary 7.8. If n>3, assume d?/c?> (n— 3)%/4(n—2). Then any map
@o: 8" — Q"(c,d) can be deformed to a harmonic map.

More generally, we will show that the join of any two harmonic homogeneous
polynomial maps of spheres can always be deformed to a harmonic map provided that
suitable ellipsoidal metrics are introduced (see Theorems 5.1, 6.1, 7.1 below).

In the context of the Hopf construction, we obtain

* This work was done at the Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440-Bures
Sur Yvette, France.
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2 J. EELLS and A. RATTO

Theorem 8.3. For any k, l€Z there is an equivariant harmonic map
©x.1 = @: Q3(a,b) - S? with Hopf invariant k-1 iff Q*(a, b) has dilatation

b/a = |l/k| (8.4)

Furthermore, ¢, , is a harmonic morphism.

We work in the equivariant context of the Thesis of Smith [27], as re-interpreted
by Ding [7].

In the terminology and notations of Sec. 2, we look for a suitable join of two
eigenmaps between spheres. That amounts to reducing the energy integral to a 1-
dimensional integral J. The required solutions are critical points of J, with specified
limits.

Our Euler-Lagrange equation has the form of an exotic spherical pendulum, with
damping D and variable gravity G:

G(s) + D(s)a(s) + G(s,a, ) sin(a(s)) cos(a(s)) = 0.

If the range is a sphere, then G is a function of s alone. By way of contrast, for ellipsoidal
ranges

G(s,a,a) =

- @ — h4s) ( CZ_A“ _ & ); see (2.10).
k2 () k?(x) \a®sin®s  b2cos?s
Several different methods are needed in appropriate contexts to produce solutions
which provide harmonic joins. Amongst them:
1) The direct method, based on weak lower semicontinuity of J—together with a
special argument involving second variations of J (see Secs. 3, 5, 7).
2) Morse Theory on closed convex subsets in Hilbert spaces; and in particular the
Mountain Pass Lemma (see Secs. 4, 6, 7).
3) Qualitative analysis of trajectories, using subsolutions, comparison theorems and
a priori estimates (see Secs. 4, 8).
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2. Basic Constructions and Formulas

2.1. We shall be concerned with ellipsoids with axes of at most two different lengths,
of the form:

0741 (a,b) = {(x,3) € R7™ x RY*L: [x[*/a? + [y[/b? = 1}
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where a, b > 0 and vertical bars designate the indicated Euclidean norm. Sometimes
we will write Q"(a, b) for Q?*9*!(a, b), slurring over the important dependence on the
decompositionp + g+ 1 =n.

We call b/a the dilatation of Q?* 9! (a, b). The ellipsoid Q?*4*!(a, b) is parametrized by

z=asins'x + bcoss'y

forxeSP,yeS?and 0 < s < m/2.
The induced Riemannian metric on Q?*9%!(q, b) is:

g = (a*sin?s)g, + (b* cos® s)g, + h*(s)ds> (2.2)
where g, g, denote the Euclidean metrics of S?, 7 and
h(s) = [b*sin%s + a®cos?s]'2.
Its volume density is
v, = afb?sin? scos?s h(s)- vsp Vsa

where vg,, vgq are volume densities of the indicated Euclidean spheres.
Also we will write

v = aPbisin? scos?s h(s).

We shall refer to (Q7*%*'(a,b),g) as an ellipsoidal join of SP, S%. We observe that
SO(p + 1) x SO(g + 1) is a group of isometries of Q7*7*!(a, b); and that Q7+ (qa, b)
and Q7*P*1(b, a) are isometric.

2.3. A map ¢:Q™(a,b)— Q"(c,d) between ellipsoids is harmonic if it is an extremal of
the energy functional

E(p)=1/2 I ldo|?* v,

Q™(a,b)

where, at each point x, |d¢(x)|is the Hilbert-Schmidt norm of the linear transformation
do(x); and * v, is the volume form of Q™(a, b).

The Euler-Lagrange equation of E can be expressed as follows: firstly, denote by
® =i o ¢ the composition of ¢ with the canonical embedding i of Q"(c,d) into R"*!.
Then ¢ is harmonic iff

A® = (|P72do*/|P @) P71 D (2.4)

where
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0 42

following the ellipsoidal join structure of Q"(c,d); and A denotes the Laplacian of
(Q™(a, b), g). At each point, the right-hand member of (2.4) is the orthogonal projection
of A® onto the normal to Q"(c, d).

If we write @ = (®,, ®,), the components being the projections on the factors of the
ambient space R"*! following the join construction of Q"(c,d), then (2.4) becomes the
system

AD, = (A/c?)®,
{ACI)2 = (A/d?)®D,

with
A _ AP/ + 10,1/
|, |?/c* + |®,|*/d*

Such harmonic maps are real analytic [12].

2.5. An eigenmap u:S? — S" is one whose components (as a map into R"') are
harmonic k-homogeneous polynomials; its associated eigenvalue is 4, = k(k + p — 1).
It is easy to calculate that |du(x)|?> = A, for all x € S?; and that u is a harmonic map.
We refer to [8] for further details and examples.
Given two eigenmaps u : S” —» S" and v: §? - S¥, we consider their join u x v, a map
between ellipsoids

(P = uxp: Qp+q+l(a’ b) N Qr+s+1(c,d);

indeed, for any continuous function « : [0, /2] — [0, /2] with «(0) = 0, a(n/2) = 7/2,
we can define

@(z) = csina(s)  u(x) + dcosa(s)  v(y)
forxe S?, ye S% and 0 < s < n/2. We assume p, g > 1.

For such equivariant maps the energy functional E reduces (up to a constant factor)
to

vds (2.6)

=2 kz(ac)o_(2 czsinza; dzcoszal
h? a’sin®> " b?cos? "

J() = 1/2j

0

where h = [b?sin? + a?cos?]'?, k(x) = [d?sin? & + c? cos? a]"2.
Here and henceforth we have abbreviated sin s by sin, a(s) by «, etc.
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2.7. We define the Hilbert space

n/2

X = {a e L3([0,7/2],R): |la||? = J

0

[a2 4+ a?]vds < oo}.

For p, g > 1 the functional J is defined and smooth on X. That is a consequence of
the fact that h is bounded above and below by positive constants and of the following
Sobolev inequality (for the Riemannian manifolds ([0, /2], sin?~2cos?), ([0, r/2],
sin? cos?™2)):

Lemma 2.8. There is a constant such that for all x € X

n/2
f a?sin?~ 2 cos?ds
0 n/2
< const. f [0? + o?]sin? cos?ds.

n/2 0
J a?sin? cos?” % ds
0

If either p = 1 or g = 1, we extend the definition of J, allowing it to assume the value
+00.

2.9. The directional derivative of J at « in the direction & € X is

dJ(a)¢ = JR/Z {kz(a) aé + I:k(oc)k’(oc) a? + ( A 474 )sinacos a] C}vds.
0

h? h? a*sin?  b?cos?

2.10. The Euler-Lagrange equation associated with the reduced energy J is

(cos sin fz)_+k’(a) L, R <c2}tu d?2

a*sin?  b%cos

P g )0 k(oc)a =W ”2>sinacosa.

Here h = dh/ds, and k' = dk/da.
This has the form

& + D(s)a + G(s,a,a)sinaxcosa = 0,
which is a sort of spherical pendulum with damping D and variable gravity G.

2.10'. An equivalent form of (2.10) is

d (k@) \ [ 24, d?J, \[sinacosa )
ds\ 2 ¥ ) T \a%sin? ~ b2 cos? k(o)

2.11. Forany critical point @ € X and variation &, the corresponding second variation
is
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n/2 ’ 2 "
V2J(@) (2. ¢) zf {[(k () + k(x)k" () i+ < A, _ d?2, )COS 2a:| g2

o h? a?sin?  b?cos?

¥ %(41(’((1)&5{' + k(a)fz)}vds.

3. Existence Methods

3.1. The following are standard properties of integrals I : L?(M, N) — R of the form

I(g) = J [A(x, 9(x))|[dp(x)* + B(x;0(x))] * vy
M

where * v, is the volume form of M; M, N are compact, 4, B: M x N — R are smooth
functions, and A > 0.

3.2. For p, g > 1 the functional J: X — R is weakly lower semicontinuous. l.e., for
any sequence ®, (%;);>; in X such that the inner products <{a;, f> — {aq, ) for all
B € X, then

J(ag) < liminf; J(«;).

Consequently, J assumes its minimum on weakly compact subsets of X; these are just
those subsets which are weakly closed and bounded in norm. In particular, J assumes
its minimum on the closed convex set

Xo={axeX:0<a(s) <n/2forall se [0,7/2]}.
Let « € X, realize that minimum
J(@) = inf{J(a):ax € X,}. (3.3)

Proposition 3.4. Assume that p, q > 1. Then J : X, — R satisfies the compactness
condition of Palais-Smale: If (¢;);>, < X is a sequence on which J is bounded and for
which dJ(a;) > 0 as i > + o0, then a subsequence of («;) converges in X,.

Proof. First we assume ¢ = 1 = d and follow [7]: we have noted in (2.7) that J is
smooth for p, ¢ > 1. Now we observe that (||o;]|);»; is bounded, because (J(;));»; is
and o; € X,. Thus a subsequence, still denoted by (x;), converges weakly to some
% € Xo-

The weak convergence insures that

n/2
J (; — o;)*vds >0  asi,j— 0.
(0]
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From (2.9) (with k = 1) we see that
/2 1
dJ (o) (o; — o) = L [h—z a;(d; — ;) + L sina;cos o;(a; — aj)]vds,

where

u v

A A
a?sin? b?cos?’

Expressing dJ(«;)(«; — ;) similarly, taking their difference, and using the hypothesis
that these directional derivatives are 0(1) (i.e., they go to zero as i, j » +o0), we have

0(1) = (dJ(o;) — dJ (o)) (e — ;)

n/2 ((X _ a')Z n/2
= L ‘—hZ’—vds + L [L(sino; cos a; — sina;cos a;)(a; — ;)] vds.

The second integral is O(1); that is seen by writing it as a sum over [0, ¢], [n/2 — ¢, 7/2]
and [, /2 — €], and estimating each separately.
Because h? is bounded above and below by positive constants, we conclude that
52 (a; — a;)*vds is 0(1); i.e., (o;);»; is @ Cauchy sequence in X,, and hence convergent.
In order to handle the case d/c # 1, it is convenient to express the energy functional
(2.6) in terms of different coordinates on Q"**1(c, d): let

t:P(s):fsk(r)dr 0<s<m2.

0

In terms of coordinates (x,y,t), x€S", ye S* and 0 <t < P(n/2), the metric on
Q0 +*1(c, d) is expressed by

g = czflz(t)gr + d2f22(t)gs + dtz
where

f1(t) = sin(P7' (1)), £>(t) = cos(P71(1)).

Thus the reduced energy functional (2.6) takes the form

J(p) = J"/Z [ﬁ_z fEBB), dzfzz(ﬂ)xu]vds.

o Lh*  a*sin? " bZcos?

By construction, J(«) = J(P(x)).
Because f; and f, behave qualitatively like sin and cos, the Palais-Smale condition
can be proved easily, using the same arguments as in the case c =d = 1.
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3.5. The qualitative theory of critical points of differentiable functions has been
adjusted to include domains which are closed convex subsets of Banach spaces
([6],[29]). Proposition 3.4 enables us to apply that theory: in particular, we have a

Mountain Pass Lemma 3.6. Assume p, q > 1. Let 0 € X, be an isolated local mini-
mum of J: X, — R, and assume there is an o € X, — {0} such that J(o) = J(0). Then
there is a critical point f§ € X, with J(B) > J(0). In particular, if J has two isolated local
minima, then it has another critical point in X, (which is not an absolute minimum).

3.7. Proposition 3.4 also provides a version of the Morse inequalities, provided the
critical points of J : X, — R are isolated. We refer to [6] for further details.

Remark 3.8. In this section we have shown the existence of certain critical points
of J: X, — R; they all satisfy the Euler-Lagrange equation (2.10). That can be seen by
proving that they are also critical points of a simply modified functional J*: X - R
[7] which also has (2.10) as its Euler-Lagrange equation.

4. Properties of Solutions

4.1. Weapply the transformation tans = e, t € R to (2.10). With the notation A(¢t) =
o (arctan e'), and H(t) = h (arctan e'), that equation becomes

A"+ [(P = )™ —fq —De' £:| A
(e'+e™) H

H? (cziue" dzlve'>:lsinAcosA

= 2 _ g2 "2
—[‘C R P | S N A T

The following is an extension of a basic lemma of [28]; the proof uses ideas from [23].
Lemma 4.2. If a € X, is a non-constant solution of (2.10), then A’(t) > O forallt € R;

and

lim A(t) =0, lim A(t) = n/2;

1= —o0 t—+oo

4.3)
ie., lima(s)=0, lim a(s) = /2.
s—=0 s—n/2
Proof. We begin by observing that
0< A(t) < /2 forall t € R. 4.4)

For if A(t) =0 for some t € R, then A'(t) # 0; for otherwise 4 = 0. Thus A would
assume negative values, and consequently « could not belong to X,,. Similarly, 4 does
not assume the value 7/2.
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We proceed to show that A’ > 0 on R: let t, be the solution of c24,e""/a® = d*A,e'/b>.
Suppose A'(t) = 0 for some t < t,. Because 4 is real analytic and non-constant, the
zeros of A’ are isolated, so there is an ¢ > O such that 4’(f) # 0fort —e <t <t

Consider the linear equation:

Y'(t) + P() Y(1) = Q,(1) (4.5)

where

A" (p—1e" —(q— e H’] (d* — c?)sin Acos AA’

* K(4)

Pa(t) = 2|:A' (e' + e—r) H

cZAe™  d?Ae! sin A cos A
_ 2 u _ v
Qa([) - 2H l: az bz :| Al(et 'y e—l)kZ(A) ’

Then P,(t) = Q,(t) on (t — &, ), because « is a solution of (2.10). Therefore the function
Y(t) = 1 is a solution of (4.5) on (t — &, ), expressible as

_ [£Q,(r)exp([} P,(u) du)dr + ¢

Y)=1= expl[-P, () du) (4.6)

for some t e (t — &, ) and ¢ € R.
If T is the first point where —co < T < tand A'(T) = 0, then (4.6) holds for t € (T, ¢ ).
The explicit formula for (4.6) is (see [23])
1 = N(t)/D(t) forte(T,t), 4.7)

where

t 2 -r 2 r 1 —=2r l—p,l 2r\l1—q
N(t)=f l:cl,,e d&ve]( +e )P (1 + e*)

B (e"+e™")

2 % sin(2A4(r))A'(r)dr + ¢

and
D(t) = (A)*(1 + e 2)'7P(1 + e*')'"9%k2(A)(H(t)) 2.
Then, for all t € (T, ), we have
N(t) > 0; (4.8)
N'(t) # 0; because A'(t) # 0,0 < A(t) < m/2and t < t,. 4.9)

Moreover
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4.10. T = —oo;for otherwise D(T) = 0, and so N(T) = 0 by (4.7). This, together with
N(t) = 0 and (4.8), tell us that N must have an interior maximum on [T, ], contra-
dicting (4.9).

We conclude from (4.10) that A" # 0 on (— oo, t ) and that (4.7) holds there. But there
must be points f € (—oo0,7) at which A'(f) is arbitrarily close to O; for if A’ is bounded
away from zero, the values of the solution 4 would not remain in [0, z/2].

Thus D, and consequently N, must have values arbitrarily close to zero. That,
together with N(z) = 0 and (4.8), insure that N has a local maximum in (—o0,1),
contradicting (4.9). That means that there is no t < t, such that A’(t) = 0. Similarly
we find that there is no t > t, for which A'(t) = 0.

Moreover, A" < 0 on R is not possible; for otherwise ¢, would be a minimum of N,
again leading to a contradiction. Therefore A" > 0 on R, which guarantees the existence
of the limits lim A(t) and lim A(t).

t—+o0 t—=—o

The condition 0 < A(t) < n/2 insures that for any small ¢ > 0 and any large C > 0
there is t > C (or t < —C) with A'(f) < ¢, |A"(1)| < &: otherwise 4 would go out of
bounds. Therefore inspection of (4.1) shows that the only limits possible are those of
(4.3).

Henceforth we shall say that a solution a of (2.10) with limits (4.3) is (or provides) a
harmonic join.

Here is a basic a priori estimate:

Lemma 4.11. Let a provide a harmonic join. Then J(x) < J(0).

Proof.

/2 2 2 2
(o) — J(0) = 1/2J [kh(f)ozz +< i il{—"f)sinza:lvds.

5 a’sin?  b?cos

From (2.10") we have

(ﬁ d22, )(sin2 o)y =k(x)tan o % (% dV)

a®sin>  b%cos
2 2(0) (K’ I
4 <k @) (tan oc)o'cv) _k) < G tan o + )o’zzv.

Tds\ n? h? \ k(a) cos?«
Therefore
=2 k'(a) 1 k?(x)a? k?(x) 2
- = - - 1 t X
J(@)—J(0)=1/2 L [l k) tan o os? “:l 2 vds+1/2 W2 (tan o)y ’

The last term is zero: this is because the asymptotic behavior of « is qualitatively as in
the case k?(x) = 1 = h?; thus the well-known asymptotic estimates of [28] can be used
to prove our assertion.
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By using the explicit expression k?(a) = [d?sin?« + c¢? cos? «], an elementary com-
putation shows that

kz(a)l:l — mtanoz

k(o)  cos?a

:| = —d?tan’«a.

In conclusion we have

n/2 *2
o2y
tan’a—-ds <0,
hZ

J(@) — JO) = —d?/2 f

0

so the Lemma is established.

Proposition 4.12. Let p, g > 1 and assume J(nt/2) > J(0). Then there is a harmonic
join o iff 0 € X is an unstable critical point of J: X, - R.

Proof. 1f 0 is unstable, then the minimum « (as in (3.3)) provides a harmonic join
by Lemma 4.2. Conversely, assume first p, ¢ > 1 and suppose that 0 were stable.

If ay, provides a harmonic join, then Lemma 4.11 assures us that J(x,) < J(0);
moreover, because of Proposition 3.4, we can apply the Mountain Pass Lemma 3.6 to
J on the closed convex set

Yo={axeX:0<a(s) <oays) forallsel[0,n/2]}

to conclude that there is a solution f# which provides a harmonic join; and J(f8) > J(0).
That contradicts Lemma 4.11.

Ifp=1,4>1orp=1=gq,then a modification [7] of the previous argument can
be used to complete the proof of our Proposition.

5. Harmonic Maps between Ellipsoids
Theorem 5.1. Let u:S? — S" and v:S?— S° be eigenmaps, p, q > 1. Assume that
there are a, b, ¢, d > 0, with a > b, such that

(@ — DA,b*/a* = (p — D4,d?/c?; (5.2)

and
(g — 1)? < 44,d?/c?. (5.3)

Then there is an equivariant harmonic map ¢ = u*,v: QP 9 (a, b) - Q"***1(c, d) homo-
topic to u *v.
Furthermore, if p = 1, then the assumption a > b is unnecessary.

Proof.
Step 1: We take the minimum a € X, as in (3.3). If 2 # 0 or n/2, then a provides a
harmonic join by Lemma 4.2.
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Step 2: We prove that
J(n/2) = J(0)

If p = 1, this is obvious because J(n/2) = +oo. If p > 1, then (5.2) forces ¢ > 1 and
integration by parts gives

= 1} 2 n/2 V) 20,2 _ K2
(g — Ddyc f sin? cos? 2 hds + wc(a” — b7)

T2 et = S —na® |, 2(p = Da?

/2
j sin?cos?h™ ' ds.
0

The second term is non-negative because a > b, so

PHY — DA 2 A 2 /2
J(H/Z)—J(O)Za b <(q V™ Ad )J‘ sin? cos? 2 hds.

2 \ (p—1a? b? 5

But (5.2) ensures that the term in parentheses is non-negative.

Step 3: Assume first ¢ > 1. We show that 0 € X, is unstable: we calculate the second
variation at 0 for Ding’s variations ¢ = sin" cos™", with suitable n, r (to be chosen in
the course of the proof). Following (2.11), we obtain

"2 (cr?sin?  d?A,
e

) sin?*?"cos? 2 "2 hds

V2J(0)(E, &)/a’b? = f

0

w2 [ 2 cos? A )
+ J [—2 <n2.—2 + 2nr | + —5— |sin?*?"cos?"* hds. (5.4)
o |h sin a®sin

Restrictn > 0,0 < r < (¢ — 1)/2. As a function of r, the second integral in (5.4) remains
bounded as r — (g — 1)/2. Now we show that the first integral in (5.4) tends to —oo as
r — (g — 1)/2: it follows that 0 € X, is unstable. When r increases to (¢ — 1)/2, the first
integral in (5.4) is clearly smaller than

"2 e2(g — 12 d2A
J [C (th b;”]sin””"cos"‘z"zhds. (5.5)
0

Now we observe that lim h?(s) = b?: thus (5.3) enables us to conclude that the term
s—n/2
in parentheses is strictly negative on [n/2 — ¢,7/2] for a suitable small ¢ > 0O (inde-

pendent of r). We write the integral (5.5) as the sum of two pieces

n/2 n/2—¢ n/2
=
0 0 n/2—¢

Now we let r tend to (g — 1)/2: the first integral in the sum is clearly bounded; the
second integral tends to —oo, because the exponent of cos in (5.5) tends to —1 as



