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PREFACE

Operations Research uses quantitative models to analyze and predict the
behavior of systems, and to provide information for decision makers. Two
key concepts in Operations Research are Optimization and Uncertainty.
Uncertainty is emphasized in Operations Research that could be called
“Stochastic Operations Research” in which uncertainty is described by
stochastic models. The typical models in Stochastic Operations Research
are queueing models, inventory models, financial engineering models, relia-
bility models, and simulation models.

International Workshop on Recent Advances in Stochastic Operations
Research (2005 RASOR Canmore) was held in Canmore, Alberta, Canada,
on August 25-26, 2005. At that time, a local proceedings was published and
distributed to all the participants, where 40 papers were presented. After
the conference, through the peer reviewing process, we published a book
“Recent Advances in Stochastic Operations Research,” edited by T. Dohi,
S. Osaki and K. Sawaki, from World Scientific Publishing Co. Pte. Ltd.,
Singapore in 2007.

Following 2005 RASOR Canmore, we hosted International Workshop
on Recent Advances in Stochastic Operations Research II (2007 RASOR
Nanzan) at Nanzan University, Nagoya, Japan, on March 5-6, 2007. Again
a local proceedings containing 43 papers was published and distributed to
all the participants. After a careful peer reviewing process, this time, we are
publishing a book “Recent Advances in Stochastic Operations Research II,”
edited by T. Dohi, S. Osaki and K. Sawaki, from World Scientific Publishing
Co. Pte. Ltd., Singapore.

This conference was sponsored by the Research Center for Mathemat-
ical Sciences and Information Engineering, Nanzan University, 27 Seirei-
cho, Seto-shi, Aichi 489-0863, Japan, to whom we would like to express
our appreciation for their financial support. We also appreciated the finan-
cial support we received in the form of Grant-in-Aid for Scientific Research
from the Ministry of Education, Sports, Science and Culture of Japan under
Grant Nos. 16201035 and 18510138. Our special thanks are due to Pro-
fessor Hiroyuki Okamura, Hiroshima University and Dr. Koichiro Rinsaka,
Kobe Gakuin University, Japan, for their continual support from the ini-
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tial planning of the conference to the final stage of editing the proceedings.
Finally, we would like to thank Chelsea Chin, World Scientific Publishing
Co., Singapore, for her warm help and patience.

Tadashi Dohi Hiroshima University
Shunji Osaki Nanzan University
Katsushige Sawaki Nanzan University

August 2008
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A PROBABILISTIC PROOF OF AN IDENTITY RELATED
TO THE STIRLING NUMBER OF THE FIRST KIND

MITSUSHI TAMAKI
Faculty of Business Administration
Aichi University
Miyoshi, Aichi, Japan
tamaki@uega.aichi-u.ac.jp

The basic assumption of the infinite formulation of the secretary problem, originally
studied by Gianini and Samuels, is that, if Uj,j = 1,2,..., is defined as the arrival
time of the jth best from an infinite sequence of rankable items, then Uy, Us,...,
are i.i.d., uniform on the unit interval (0,1). An item is referred to as a record
if it is relatively best. It can be shown that a well known identity related to the
Stirling number of the first kind, as given in Eq.(3) in this note, is just the identity
obtained through the derivation of the probability mass function of the number
of records that appear on time interval (s,t),0 < s < t < 1, in two ways in the
infinite formulation.

1. Introduction

A set of n rankable items (1 being the best and n the worst) appear before
us one at a time in random order with all n! permutations equally likely.
That is, each of the successive ranks of n items constitutes a random per-
mutation. Suppose that all that can be observed are the relative ranks of
the items as they appear. If X, denotes the relative rank of the jth item
among the first j items, the sequentially observed random variables are
X1,Xs,...,X,. Renyi[8] has shown that

(a) X1, Xs,..., X, are independent random variables.
(b) P{X; =1}=1/j, 1<i<jl<j<n

The reader is advised to check the case n = 3 or 4, if he/she is not fa-
miliar to these properties of the relative ranks.
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The jth item is called candidate if it is relatively best, i.e., X; =1 and
we introduce an indicator defined as

1,if X; =1
I =

0, otherwise.

Thens
Nop=L+1Ih+ ---+1, (1)

denotes the total number of candidates. It is well known(see, e.g., Eq(2.5.9)
of Arnold et al.[1] or Sec. 6.2, 6.3 and 9.5 of Blom et al.[2]) that the
probability mass function of N, is expressed as

n

palk) = PN =) = 2 |

], 1<k <n,

k
number of the first kind (see an interesting paper by Knuth(7] for this no-
tation). This number can be simply calculated from the following recursive
relation

where the no.tation[n], 1 <k <n, 1<nisareal number called Stirling

with [1] =1 and [:] =0 for k =0 or k > n, or directly from

W n—1 1 tk—1—1 1 ia—1 1
i k-1 k=1, ko -2 T U

k
of n elements having k cycles(see, e.g., Graham et al.[5] or Blom et al.[2]).
A typical identity of the Stirling number of the first kind is

It is noted that [n] is also interpreted as the number of permutations

i[g]zkzz(z-i-l)---(z-}-n—l), (2)

k=0
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which is immediate from (a), (b) and (1) if we observe that the probability
generating function of the sum of the independent random variables is the
product of the individual probability generating functions, i.e., E[z/"] =
]—[;;1 E[z":]. The identity with which we are concerned here is, for any
positive integer k,

= [n]z" 1 1 \*

n=

as listed in Graham et al.[5](see Eq.(7.50), p.337). Multiply both sides of
(2) by v"/n! (0 < v < 1) and then add up over n. Then

where the last equality follows from the binomial theorem. Expanding
(1—v)"* =exp{z log(—ll—v)} into powers of z and comparing the coefficient
of z¥ on both sides yields the identity (3) with z replaced by v. Our
objective is to give a probabilistic proof of this identity.

2. Probabilistic Proof

We employ the framework of the infinite secretary problem as defined and
originally studied by Gianini and Samuels[3]. Let the best, second best, etc.,
of an infinite sequence of rankable items arrive at times Uy, Us, ..., which
are i.i.d., uniform on the unit interval (0,1). For each ¢ in this interval, let
Vi(t) be the arrival time of the item which is ith best among all those that
arrive before time t. Then as a familiar property of random samples from
a uniform distribution on (0, 1), we find that

Vi(t)'s are i.i.d., uniform on (0, ). (4)

An item is called record if it is relatively best when it appears. We denote
by N(s,t) the number of records that appear on time interval (s,t),0 <
s <t <1, and derive the probability mass function of N(s,t) in two ways.

2.1. Derivation by a forward-looking argument
One way is to relate N(s,t) with a random variable defined as
M(s,t) = min{i > 1: V;(t) < s}.

That is, M (s,t) represents the rank of the best item that appears before s
relative to all those that appear before ¢t. Focus our attention on the arrival
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times of the first m + 1 bests that appear before ¢. Then M(s,t) takes on
a value m + 1 if and only if m bests appear after s, whereas the (m + 1)th
best appears before s. Thus we have from the property (4)

S S m
P{M(s,t) =m+1} =3 (1— Z) . m=0,1,2,...
implying that M (s,t) has a geometric distribution. Conditioning on M (s, t)
yields

P{N(s,t) =k} = i P{N(s,t) = k|M(s,t) =m+1}
m=k
xP{M(s,t) =m+1}

oo

- Srse-9" ®

m=k

Pm(k)P{M(s,t) = m+ 1}
k

3

where the second equality follows because, given M (s, t) = m+-1, the arrival
orders of m bests are equally likely and each of the records is identified as
a candidate.

2.2. Derivation by a backward-looking argument

Another way to obtain P{N(s,t) = k} is to trace the arrival epochs of
the records backwards in time. The following lemma is crucial, which can
be seen as a refinement of Theorem 1 of Gilbert and Mosteller[4](see also
problem 32 of Chap.13 of Karlin and Taylor[6]).

Lemma. Let Z;,Z,... be a sequence of random variables with Z; uni-
formly distributed on time interval (0,Zx—1), Zop = t < 1. That is,
P{Zy <z | Zy_1 = a} = z/a,0 < x < a,k > 1. If we denote by K(s,t)
the number of Z;, Zs,... whose values exceed s for 0 < s < t, namely,
K(s,t) = max{k : Z; > s} where max{¢} = 0, then K(s,t) is distributed
as a Poisson random variable with parameter log(t/s), i.e.,

S 0O, S k
P{K(s,t) =k} = {Mi{—)}. (6)

Proof. We first show by induction on ¢ that the distribution function of



