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PREFACE

This book has much in common with our earlier book (Lutes and Sarkani,
1997). In fact, a few of the chapters are almost unchanged. At the same time, we
introduce several concepts that were not included in the earlier book and
reorganize and update the presentation on several other topics.

The book is designed for use as a text for graduate courses in random
vibrations or stochastic structural dynamics, such as might be offered in
departments of civil engineering, mechanical engineering, aerospace engineering,
ocean engineering, and applied mechanics. It is also intended for use as a
reference for graduate students and practicing engineers with a similar level of
preparation. The focus is on the determination of response levels for dynamical
systems excited by forces that can be modeled as stochastic processes.

Because many readers will be new to the subject, our primary goal is
clarity, particularly regarding the fundamental principles and relationships. At the
same time, we seek to make the presentation sufficiently thorough and rigorous
that the reader will be able to move on to more advanced work. We believe that
the book can meet the needs of both those who wish to apply existing stochastic
procedures to practical problems and those who wish to prepare for research that
will extend the boundaries of knowledge.

In the hopes of meeting the needs of a broad audience, we have made this
book relatively self-contained. We begin with a fairly extensive review of
probability, random variables, and stochastic processes before proceeding to the
analysis of dynamics problems. We do presume that the reader has a background
in deterministic structural dynamics or mechanical vibration, but we also give a
brief review of these methods before extending them for use in stochastic
problems. Some knowledge of complex functions is necessary for the
understanding of important frequency domain concepts. However, we also
present time domain integration techniques that provide viable alternatives to the
calculus of residues. Because of this, the book should also be useful to engineers
who do not have a strong background in complex analysis.

The choice of prerequisites, as well as the demands of brevity, sometimes
makes it necessary to omit mathematical proofs of results. We do always try to

give mathematically rigorous definitions and results even when mathematical

xi



Xii Random Vibrations

details are omitted. This approach is particularly important for the reader who
wishes to pursue further study. An important part of the book is the inclusion of a
number of worked examples that illustrate the modeling of physical problems as
well as the proper application of theoretical solutions. Similar problems are also
presented as exercises to be solved by the reader.

We attempt to introduce engineering applications of the material at the
earliest possible stage, because we have found that many engineering students
become impatient with lengthy study of mathematical procedures for which they
do not know the application. Thus, we introduce linear vibration problems
immediately after the introductory chapter on the modeling of stochastic
problems. Time-domain interpretations are emphasized throughout the book,
even in the presentation of important frequency-domain concepts. This includes,
for example, the time history implications of bandwidth, with situations varying
from narrowband to white noise.

One new topic added in this book is the use of evolutionary spectral
density and the necessary time-domain and frequency-domain background on
modulated processes. The final chapter is also new, introducing the effect of
uncertainty about parameter values. Like the rest of the book, this chapter focuses
on random vibration problems. The discussion of fatigue has major revisions and
is grouped with first passage in an expanded chapter on the analysis of failure.

We intentionally include more material than can be covered in the typical
one-semester or one-quarter format, anticipating that different instructors will
choose to include different topics within an introductory course. To promote this
flexibility, the crucial material is concentrated in the early portions of the book.
In particular, the fundamentals of stochastic modeling and analysis of vibration
problems are presented by the end of Chapter 6. From this point the reader can
proceed to most topics in any of the other chapters. The book, and a modest
number of readings on current research, could also form the basis for a two-
semester course. It should be noted that Chapters 9-12 include topics that are the
subjects of ongoing research, with the intent that these introductions will equip
the reader to use the current literature, and possibly contribute to its future.

Loren D. Lutes
Shahram Sarkani
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Chapter 1
Introduction

1.1 Why Study Random Vibration?

Most structural and mechanical engineers who study probability do so
specifically so that they may better estimate the likelihood that some engineering
system will provide satisfactory service. This is often stated in the
complementary way as estimating the probability of unsatisfactory service or
failure. Thus, the study of probability generally implies that the engineer accepts
the idea that it is either impossible or infeasible to devise a system that is
absolutely sure to perform satisfactorily. We believe that this is an honest
acceptance of the facts in our uncertain world, but it is somewhat of a departure
from the philosophy of much of past engineering education and of the explicit
form of many engineering design codes. Of course, engineers have always
known that there was a possibility of failure, but they have not always made an
effort to quantify the likelihood of that event and to use it in assessing the
adequacy of a design. We believe that more rational design decisions will result
from such explicit study of the likelihood of failure, and that is our motivation for
the study of probabilistic methods.

The characterization of uncertainty in this book will always be done by
methods based on probability theory. This is a purely pragmatic choice, based on
the fact that these methods have been shown to be useful for a great variety of
problems. Methods based on fundamentally different concepts, such as fuzzy
sets, have also been demonstrated for some problems, but they will not be
investigated here.

The engineering systems studied in this book are dynamical systems.
Specifically, they are systems for which the dynamic motion can be modeled by a
differential or integral equation or a set of such equations. Such systems usually
consist of elements having mass, stiffness, and damping and exhibiting vibratory
dynamic behavior. The methods presented are general and can be applied to a
great variety of problems of structural and mechanical vibration. Examples will
vary from simple mechanical oscillators to buildings or other large structures,
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with excitations that can be either forces or base motion. The primary emphasis
will be on problems with linear models, but we will also include some study of
nonlinear problems. For nonlinear problems, we will particularly emphasize
methods that are direct extensions of linear methods.

Throughout most of this book, the uncertainty studied will be limited to
that in the excitation of the system. Only in Chapter 12 will we introduce the
topic of uncertainty about the parameters of the system. Experience has shown
that there are indeed many problems in which the uncertainty about the input to
the system is a key factor determining the probability of system failure. This is
particularly true when the inputs are such environmental loads as earthquakes,
wind, or ocean waves, but it also applies to numerous other situations such as the
pressure variations in the exhaust from a jet engine. Nonetheless, there is almost
always additional uncertainty about the system parameters, and this also can
affect the probability of system failure.

The response of a dynamical system of the type studied here is a time
history defined on a continuous set of time values. The field of probability that is
applicable to such problems is called stochastic (or random) processes. Thus, the
applications presented here involve the use of stochastic processes to model
problems involving the behavior of dynamical systems. An individual whose
background includes both a course in stochastic processes and a course in either
structural dynamics or mechanical vibrations might be considered to be in an
ideal situation to study stochastic vibrations, but this is an unreasonably high set
of prerequisites for the beginning of such study. In particular, we will not assume
prior knowledge of stochastic processes and will develop the methods for
analysis of such processes within this book. The probability background needed
for the study of stochastic processes is a fairly thorough understanding of the
fundamental methods for investigating probability and, especially, random
variables. This is because a stochastic process is generally viewed as a family of
random variables. For the benefit of readers lacking the necessary random
variable background, Chapters 2 and 3 give a relatively comprehensive
introduction to the topic, focusing on the aspects that are most important for the
understanding of stochastic processes. This material may be bypassed by readers
with a strong background in probability and random variables, although some
review of the notation used may be helpful, because it is also the notation of the
remainder of this book.

We expect the reader to be familiar with deterministic approaches to
vibration problems by using superposition methods such as the Duhamel
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convolution integral and, to a lesser extent, the Fourier transform. We will
present brief reviews of the principal ideas involved in these methods of vibration
analysis, but the reader without a solid background in this area will probably
need to do some outside reading on these topics.

1.2 Probabilistic Modeling and Terminology

Within the realm of probabilistic methods, there are several terms related to
uncertainty that warrant some comment. The term random will be used here for
any variable about which we have some uncertainty. This does not mean that no
knowledge is available but rather that we have less than perfect knowledge. As
indicated in the previous section, we will particularly use results from the area of
random variables. The word stochastic in common usage is essentially
synonymous with random, but we will use it in a somewhat more specialized
way. In particular, we will use the term stochastic to imply that there is a time
history involved. Thus, we will say that the dynamic response at one instant of
time ¢ is a random variable X(#) but that the uncertain history of response over a
range of time values is a stochastic process {X(7)}. The practice of denoting a
stochastic process by putting the notation for the associated random variables in
braces will be used to indicate that the stochastic process is a family of random
variables—one for each ¢ value. The term probability, of course, will be used in
the sense of fundamental probability theory. The probability of any event is a
number in the range of zero to unity that models the likelihood of the event
occurring. We can compute the probabilities of events that are defined in terms of
random variables having certain values, or in terms of stochastic processes
behaving in certain ways.

One can view the concepts of event, random variable, and stochastic
process as forming a hierarchy, in order of increasing complexity. One can
always give all the probabilistic information about an event by giving one
number—the probability of occurrence for the event. To have all the information
about a random variable generally requires knowledge of the probability of many
events. In fact, we will.be most concerned with so-called continuous random
variables, and one must know the probabilities of infinitely many events to
completely describe the probabilities of a continuous random variable. As
mentioned before, a stochastic process is a family of random variables, so its
probabilistic description will always require significantly more information than
does the description of any one of those random variables. We will be most
concerned with the case in which the stochastic process consists of infinitely
many random variables, so the additional information required will be much
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more than for a random variable. One can also extend this hierarchy further, with
the next step being stochastic fields, which are families of stochastic processes.
Within this book we will use events, random variables, and especially stochastic
processes, but we will avoid stochastic fields and further generalizations.

dhkkhkhkhkkhkhkhhkhkhhhhdhhdhhkhhhhhhhhhidhhdhhhhhhhhhhhhkhhhdkhhkhhhkhhhhhkhhhhkhhhhkhhhkhrhkrhkhrdhhdihd

Example 1.1: Let ¢t denote time in seconds and the random variable X(z), for
any fixed t value, be the magnitude of the wind speed at a specified location at
that time. Furthermore, let the family of X(f) random variables for all
nonnegative ¢ values be a stochastic process, {X(#)}, and let A be the event
{X(10)=<5m/s}. Review the amount of information needed to give complete
probabilistic descriptions of the event A, the random variable X(z), and the
stochastic process {X(7)}.

All the probabilistic information about the event A is given by one number—its
probability of occurrence. Thus, we might say that p= P(A) is that probability of
occurrence, and the only other probabilistic statement that can be made about A
is the almost trivial affirmation that 1- p=P(A€), in which A€ denotes the event
of A not occurring, and is read as “ A complement” or “not A.”

We expect there to be many possible values for X(10). Thus, it takes much
more information to give its probabilistic description than it did to describe A. In
fact, one of the simpler comprehensive ways of describing the random variable
X(10) is to give the probability of infinitely many events like A. That is, if we
know P[X(10)su] for all possible u values, then we have a complete
probabilistic description of the random variable X(10). Thus, in going from an
event to a random variable we have moved from needing one number to needing
many (often infinitely many) numbers to describe the probabilities.

The stochastic process {X(7): t=0} is a family of random variables, of which
X(10) is one particular member. Clearly, it takes infinitely more information to
give the complete probability description for this stochastic process than it does
to describe any one member of the family. In particular, we would need to know
the probability of events such as [X(t1) =u1,X(#2) su2,--,X(tj)=suj] for all
possible choices of j, #1,--,tj, and uy, --,u;.

If one chooses to extend this hierarchy further, then a next step could be a
stochastic field giving the wind speed at many different locations, with the speed
at any particular location being a stochastic process like {X(7)}.

E s e R e e e e e e e e e e s et

It should also be noted that there exist special cases that somewhat blur the
boundaries between the various levels of complexity in the common
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classification system based on the concepts of event, random variable, stochastic
process, stochastic field, and so forth. In particular, there are random variables
that can be described in terms of the probabilities of only a few events, or even
only one event. Similarly, one can define stochastic processes that are families of
only a few random variables. Within this book, we will generally use the concept
of a vector random variable to describe any finite family of random variables and
reserve the term stochastic process for an infinite (usually uncountable) family of
random variables. Finally, we will treat a finite family of stochastic processes as
a vector stochastic process, even though it could be considered a stochastic field.

dhkkhkkhhkhkhkhkhkhkhhhhhhhhhhhhdhdhhhhdhdhkhhdhhhhdhhhhkhdhhdhhrhdhrdrdrhdhhhhdhdhdrhhrhhhhhhdhhihtrd

Example 1.2: Let the random variable X denote the maintenance cost for an
antenna subjected to the wind, and presume that X =0 if the antenna is
undamaged and $5,000 (replacement cost) if it is damaged. How much
information is needed to describe all probabilities of X ?

Because X has only two possible values in this simplified situation, one can
describe all its probabilities with only one number— p = P(X =5,000) = P(D), in
which D denotes the event of antenna damage occurring. The only other
information that can be given about the random variable X is P(X=0)=
P(D)=1-p.

Example 1.3: Let the random variable X denote the maintenance cost for an
antenna structure subjected to the wind, and presume that there are two possible
types of damage. Event A denotes damage to the structure that supports the
antenna dish, and it costs $2,000 to repair, while event B denotes damage to the
dish itself, and costs $3,000 to repair. Let the random variable X denote the total
maintenance cost. How much information is needed to describe all probabilities
of X?

In this problem, X may take on any of four values: zero if neither the structure or
the dish is damaged, 2,000 if only the structure is damaged, 3,000 if only the
dish is damaged, and 5,000 if both structure and dish are damaged. Thus, one
can give all the probability information about X with no more than the four
numbers giving the probability that X takes on each of its possible values. These
are easily described by using the events A and B and the operations of
complement and intersection. For example, we might write p; = P(X =5,000) =
P(AB), p,=P(X=3,000)=P(A°B), p3=P(X=2,000)=P(AB), and p4 =
P(X =0)=P(A°B°). Even this is somewhat redundant because we also know
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that p; + p» + p3 + p4 =1, so knowledge of only three of the probabilities, such as
D1, P2, and ps, would be sufficient to describe the problem.

Example 1.4: Consider the permanent displacement of a rigid 10 meter square
foundation slab during an earthquake that causes some sliding of the underlying
soil. Let X, Y, and Z denote the east-west, north-south, and vertical
translations of the center of the slab, and let 6y, 6y, and 6; be the rotations (in
radians) about the three axes. What type of probability information is required to
describe this foundation motion?

Because {X,Y,Z,0,,6y,0;} is a family of random variables, one could consider
this to be a simple stochastic process. The family has only a finite number of
members, though, so we can equally well consider it to be a vector random
variable. We will denote vectors by putting an arrow over them and treat them as
column matrices. Thus we can write V =(X,Y,Z,6x,6y,02)T, in which the T
superscript denotes the matrix transpose operation, and this column vector 1%
gives the permanent displacement of the foundation. Knowledge of all the
probability information about V would allow us to write the probability of any
event that was defined in terms of the components of V. That is, we want to be
able to give P(A) for any event A that depends on V in the sense that we can
tell whether A has or has not occurred if we know the value of the vector V.
Clearly we must have information such as P(X <100mm) and P(6; >0.05rad),
but we must also know probabilities of intersections like
P(X =100mm, 6; <0.05rad, 6 <0.1rad), and so forth.

Example 1.5: Consider the permanent

deformation of a system consisting of a rigid < W
building 20 meters high resting on the ‘a/\
foundation of Example 1.4. Let a new random //-( £
variable W denote the translation to the west of o
a point at the top of the north face of the Y o
building, as shown in the sketch. Show the IL
relationship between W and the vector V of X &

Q
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In order to describe the random variable W, we need to be able to calculate
probabilities of the sort P(W <200mm). We can see, though, that W is related
to the components of our vector % by W=-X+56,-206y, so
P(W =200mm) = P(-X +56; -206y <200mm). It can be shown that one has
sufficient information to compute all such terms as this if one knows P(X <u,



