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INTRODUCTION

Perhaps the most fundamental goal of abstract harmonic
analysis is to understand the actions of groups on spaces of
functions. Sometimes this goal appears in a slightly dis-—
guised form, as when one studies systems of differential
equations invariant under a group; or it may be made quite
explicit, as in the representation-theoretic theory of auto-—
morphic forms. Interesting particular examples of problems
of this kind abound. Generously interpreted, they may in
fact be made to include a significant fraction of all of
mathematics. A rather smaller number are related to the
subject matter of this book. Here are some of them.

Let X be a pseudo-Riemannian manifold, and G a
group of isometries of X. Then X carries a natural mea-
sure, and G acts on L2(X) by unitary operators. Often
(for example, if the metric is positive definite and com-
plete) the Laplace-Beltrami operator A on X is self-

adjoint. In that case, G will preserve its spectral
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decomposition. Conversely, if the action of G 1is transi-
tive, then any G-invariant subspace of L2(X) will be
preserved by A. The problem of finding G-invariant sub-
spaces therefore refines the spectral problem for A.

The prototypical example of this nature is the sphere
Sn_l. with G the orthogonal group O(n). If n is at
least 2, the minimal invariant subspaces for O(n) acting
on L2(Sn—1) are precisely the eigenspaces of the spherical
Laplacian. (This is the abstract part of the theory of
spherical harmonics.) If n is 2, we are talking about
Fourier series. The fundamental importance of these is
clear; but they may of course be analyzed without explicit
discussion of groups. For n = 3, the theory of spherical
harmonics leads to the solution of the Schrodinger equation
for the hydrogen atom. Here the clarifying role of the
group is less easy to overlook, and it was in this connec-
tion that the "Gruppenpest" entered quantum physics in an
explicit way.

A second example, still in the framework of pseudo—
Riemannian manifolds, is the wave operator. Viewed on a
four-dimensional space-time manifold, this is just the
Laplace-Beltrami operator for a metric of signature (3,1).

If the manifold has a large isometry group (for instance, if
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it is Minkowski space), then the space of solutions can
often be described terms of this group action.

An example with a rather different flavor is the space
X of lattices (that is, discrete subgroups isomorphic to
Zn) in R®. An automorphic form for G = GL(n,R) is a
smooth function on X, subject to some technical growth and
finiteness conditions. (Actually it is convenient to consi-
der at the same time various covering spaces of X, such as
(for fixed p) the space of lattices L endowed with a
basis of L/pL.) It is easy to imagine that functions on X
have something to do with number theory, and this is the
case. One goal of the representation-theoretic theory of
automorphic forms is to understand the action of G on the
space of automorphic forms. Because the G-invariant mea-
sure on X has finite total mass (although X 1is not com-
pact), this problem is closely connected to the correspond-
ing L2 problem. An introduction to this problem may be
found in [Arthur, 1979].

Finally, suppose X 1is a compact locally symmetric
space. (Local symmetry means that -Id on each tangent
space exponentiates to a local isometry of X. An example
is a compact Riemann surface.) We seek to understand the

deRham cohomology groups of X. Here there is no group
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action in evidence, and no space of functions. However,
Hodge theory relates the cohomology to harmonic forms on X,
so the latter defect is not serious. For the former, we
consider the bundle Y over X whose fiber at p 1is the
(compact) group Kp of local isometries of X fixing bp.
Harmonic forms on X pull back to Y as certain vector-
valued functions. On the other hand, Y has a large
transitive group G acting on it. (G may be taken to be
the isometry group of the universal cover of X; Y is then
the quotient of G by the fundamental group of X.) The
cohomology of X can now be studied in terms of the action
of G on functions on Y. Perhaps surprisingly, this has
turned out to be a useful approach (see [Borel-Wallach,
1980]).

With these examples in mind, we recall very briefly the
program for studying such problems which had emerged by 1950
or so. The first idea was to formalize the notion of group
actions on function spaces. In accordance with the general
philosophy of functional analysis, the point is to forget

where the function space came from.

Definition 0.1. Suppose G 1is a topological group. A repre-
sentation of G 1is a pair (w,V) consisting of a complex

topological vector space V, and a homomorphism w from G
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to the group of automorphisms of V. We assume that the map
from GxV to V, given by
(g.v) » w(g)v

is continuous. An invariant subspace of the representation

is a subspace W of V which is preserved by all the oper-
ators w(g) (for g in G). The representation is called

reducible if there is a closed invariant subspace W other

than V itself and {O}. We say that w is irreducible if

V 1is not zero, and w7 is not reducible.

The problem of understanding group actions on spaces of
functions can now be formalized in two parts: we want first
to understand how general representations are built from
irreducible representations, and then to understand irredu-
cible representations. This book is concerned almost exclu-—
sively with the second part. Nevertheless, we may hope to
gain a little insight into the first part along the way,
much as one may study architecture by studying bricks.

If we take G to be Z, then a representation is deter-
mined by a single bounded invertible operator, w(1). The
only interesting irreducible representations of G are the
one-dimensional ones (sending 1 to a non-zero complex num-—
ber). The decomposition problem in this case amounts to

trying to diagonalize the operator w(1). There are some



