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1 Introduction to Markov Random Fields

Andrew Blake and Pushmeet Kohli

This book sets out to demonstrate the power of the Markov random field (MRF) in vision.
It treats the MRF both as a tool for modeling image data and, coupled with a set of recently
developed algorithms, as a means of making inferences about images. The inferences con-
cern underlying image and scene structure to solve problems such as image reconstruction,
image segmentation, 3D vision, and object labeling. This chapter is designed to present
some of the main concepts used in MRFs, both as a taster and as a gateway to the more
detailed chapters that follow, as well as a stand-alone introduction to MRFs.
The unifying ideas in using MRFs for vision are the following:

» Images are dissected into an assembly of nodes that may correspond to pixels or
agglomerations of pixels.

» Hidden variables associated with the nodes are introduced into a model designed to
“explain” the values (colors) of all the pixels.

* A joint probabilistic model is built over the pixel values and the hidden variables.

« The direct statistical dependencies between hidden variables are expressed by explicitly
grouping hidden variables; these groups are often pairs depicted as edges in a graph.

These properties of MRFs are illustrated in figure 1.1. The graphs corresponding to such
MREF problems are predominantly gridlike, but may also be irregular, as in figure 1.1(c).
Exactly how graph connectivity is interpreted in terms of probabilistic conditional depen-
dency is discussed a little later.

The notation for image graphs is that the graph G = (V, £) consists of vertices V =
(1,2,...,1,..., N) corresponding, for example, to the pixels of the image, and a set of
edges £ where a typical edge is (i, j), i, j € V, and edges are considered to be undirected,
so that (i, j) and (j, i) refer to the same edge. In the superpixel graph of figure 1.1), the
nodes are superpixels, and a pair of superpixels forms an edge in £ if the two superpixels
share a common boundary.

The motivation for constructing such a graph is to connect the hidden variables associated
with the nodes. For example, for the task of segmenting an image into foreground and
background, each node i (pixel or superpixel) has an associated random variable X; that
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(a)

Figure 1.1

Graphs for Markov models in vision. (a) Simple 4-connected grid of image pixels. (b) Grids with greater con-
nectivity can be useful—for example, to achieve better geometrical detail (see discussion later)—as here with the
8-connected pixel grid. (c) Irregular grids are also useful. Here a more compact graph is constructed in which
the nodes are superpixels—clusters of adjacent pixels with similar colors.

may take the value 0 or 1, corresponding to foreground or background, respectively. In order
to represent the tendency of matter to be coherent, neighboring sites are likely to have the
same label. So where (i, j) € £, some kind of probabilistic bias needs to be associated with
the edge (i, j) such that X; and X ; tend to have the same label—both 0 or both 1. In fact, any
pixels that are nearby, not merely adjacent, are likely to have the same label. On the other
hand, explicitly linking all the pixels in a typical image, whose foreground/background
labels have correlations, would lead to a densely connected graph. That in turn would
result in computationally expensive algorithms. Markov models explicitly represent only
the associations between relatively few pairs of pixels—those pixels that are defined as
neighbors because of sharing an edge in £. The great attraction of Markov Models is that
they leverage a knock-on effect—that explicit short-range linkages give rise to implied
long-range correlations. Thus correlations over long ranges, on the order of the diameters
of typical objects, can be obtained without undue computational cost. The goal of this
chapter is to investigate probabilistic models that exploit this powerful Markov property.

1.1 Markov Chains: The Simplest Markov Models

In a Markov chain a sequence of random variables X = (X, X, .. .) has a joint distribution
specified by the conditionals P(X; | X;—1, X;—2, ..., X1). The classic tutorial example [381,
sec. 6.2] is the weather, so that X; € £ = {sunny, rainy}. The weather on day i can be
influenced by the weather many days previous, but in the simplest form of Markov chain,
the dependence of today’s weather is linked explicitly only to yesterday’s weather. It is also

linked implicitly, as a knock-on effect, to all previous days. This is a first-order Markov
assumption, that

P(X; | X1, Xi2,...,X1) = P(X; | X;_1). (1.1)

This is illustrated in figure 1.2. The set of conditional probabilities P (X; | X;_;) is in fact
a 2 x 2 matrix. For example:
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(a) el

(b)

(c)

Figure 1.2

A simple first-order Markov chain for weather forecasting. (a) A directed graph is used to represent the conditional
dependencies of a Markov chain. (b) In more detail, the state transition diagram completely specifies the proba-
bilistic process of the evolving weather states. (c) A Markov chain can alternatively be expressed as an undirected
graphical model; see text for details.

Yesterday (X;_)

Rain | Sun

Today (X;) Rain | 0.4 | 0.8

Sun 06 | 0.2

An interesting and commonly used special case is the stationary Markov chain, in which
the matrix

Mi(x,x) = P(Xy =2 | X4 =% 12

is independent of time i, so that M;(.,.) = M;_;(., .). In the weather example this corre-
sponds to the assumption that the statistical dependency of weather is a fixed relationship,
the same on any day.

We will not dwell on the simple example of the Markov chain, but a few comments may be
useful. First, the first-order explicit structure implicitly carries longer-range dependencies,
too. For instance, the conditional dependency across three successive days is obtained by
multiplying together the matrices for two successive pairs of days:

P(X;=x|Xia=x") =) Mi(x,x)Mi_1(x', x"). (1.3)

x'el
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Thus the Markov chain shares the elegance of Markov models generally, which will recur
later with models for images, that long-range dependencies can be captured for the “price” of
explicitly representing just the immediate dependencies between neighbors. Second, higher-
order Markov chains, where the explicit dependencies go back farther than immediate
neighbors, can also be useful. A famous example is “predictive text,” in which probable
letters in a typical word are characterized in terms of the two preceding letters—taking just
the one preceding letter does not give enough practical predictive power. Predictive text,
then, is a second-order Markov chain.

The directed graph in figure 1.2a) is a graphical representation of the fact that, for a
Markov chain, the joint density can be decomposed as a product of conditional densities:

PX) = P(xy | xy-1) ... P(xi [ xi—1) ... P(x2 | x1) P(x1), (1.4)

where for simplicity, in a popular abuse of notation, P (x) denotes P (X = X) and, similarly,
P(x; | x;i—) denotes P(X; = x; | X;—1 = x;—1). This convention is used frequently through-
out the book. An alternative formalism that is commonly used is the undirected graphical
model. Markov chains can also be represented in this way (figure 1.2c), corresponding to a
factorized decomposition:

P(X) = Py nv-1(xn, XN-1) - .. Pii—1(xi, Xi-1) . . . P2,1(x2, X1), (1.5)

where ®;;_; is a factor of the joint density. It is easy to see, in this simple case of the
Markov chain, how the directed form (1.4) can be reexpressed in the undirected form (1.5).
However, it is not the case in general, and in particular in 2D images, that models expressed
in one form can easily be expressed in the other. Many of the probabilistic models used in
computer vision are most naturally expressed using the undirected formalism, so it is the
undirected graphical models that dominate in this book. For details on directed graphical
models see [216, 46].

1.2 The Hidden Markov Model (HMM)

Markov models are particularly useful as prior models for state variables X; that are to
be inferred from a corresponding set of measurements or observations z = (z1, 22, - - . ,
Zi, ..., 2n). The observations z are themselves considered to be instantiations of a random
variable Z representing the full space of observations that can arise. This is the classical
situation in speech analysis [381, sec. 6.2], where z; represents the spectral content of a
fragment of an audio signal, and X; represents a state in the time course of a particular word
or phoneme. It leads naturally to an inference problem in which the posterior distribution
for the possible states X, given the observations z, is computed via Bayes’s formula as

PN =x|Z =z)ex Pli=z| X =x)P(X =X). (1.6)

Here P (X = x) is the prior distribution over states—that is, what is known about states X
in the absence of any observations. As before, (1.6) is abbreviated, for convenience, to
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P(x|2z) x P(z | x)P(x). (1.7

The omitted constant of proportionality would be fixed to ensure that ) P(x | z) = 1.
Often multiple models are considered simultaneously, and in that case this is denoted

Px|z,w) x P(z|Xx,w)P(Xx | w), (1.8)

where the model parameters w € 2 may determine the prior model or the observation
model or both. The constant of proportionality in this relation would of course depend on z
and on .

The prior of an HMM is itself represented as a Markov chain, which in the first-order
case was decomposed as a product of conditional distributions (1.4). The term P(z | x)
is the likelihood of the observations, which is essentially a measure of the quality of the
measurements. The more precise and unambiguous the measuring instrument, the more
the likelihood will be compressed into a single, narrow peak. This captures the fact that
a more precise instrument produces more consistent responses z, under a given condition
represented by the state X = x. It is often assumed—and this is true of the models used
in many of the chapters of this book—that observations are independent across sites. The
observation at site i depends only on the corresponding state. In other words:

P(z|x) = P(zn | xn)P(zn—1 | XN=1) ... P(z1] x1). (1.9

The directed graphical model for the conditional dependencies of such a first-order HMM is
givenin figure 1.3a). The figure captures the conditional dependencies both of the underlying

R ) S P e
e xl—> | _,lx,_ll_.x, ,xﬁ-l R '}_’

|ZN]

al L L el [ Ea [ =

e —1y 1 x; ‘X;f: x» 1 o x |
(b) il —[ z}l i Vitl o ,, N
Figure 1.3

A first-order hidden Markov model (HMM). (a) A directed graph is used to represent the dependencies of a first-
order HMM, with its Markov chain prior, and a set of independently uncertain observations. (b) Alternatively the
HMM can be represented as an undirected graphical model (see text).



6 1 Introduction to Markov Random Fields

Markov chain and of the independence of the observations. Alternatively, an HMM can be
expressed as an undirected graphical model, as depicted in figure 1.3(b), in which the prior
is decomposed as in (1.5), and the likelihood is

Pz |x) = ®nxy)Py_1(xy-1) ... P1(x1), (1.10)

where trivially ®; (x;) = P(z; | x;).
Discrete HMMs, with a finite label set £, are largely tractable. Rabiner and Juang [382]

set out three canonical problems for HMMSs, and algorithms to solve them. The problems
are the following:

1. Evaluating the observation probability P(z | @) In this problem there is no explicit
state dependence, because it has been “marginalized” out by summation over states:

Piz|w) = Z P(z| X, »)P(x | w). (1.11)

xelN

The main application of this evaluation is to determine which of a set of known models fits
the data best:

max P(z | w). (1.12)
WeR

The quantity P (z | ) is also known as the evidence [328] for the model w from the data z.

2. MAP estimation Given a model w and a set of data z, estimate the most probable
(maximum a posteriori) sequence X of states as the mode of the posterior distribution (1.8).

3. Parameter estimation Given a set of data z, estimate the parameters w € €2, a contin-
uous parameter space that best fits the data. This is the problem that must be solved to build
a particular model from training data. It is closely related to the model selection problem
above, in that both maximize P(z | w), the difference being that the model space 2 is,
respectively, discrete or continuous.

These three problems are essentially solved by using two algorithms and variants of them.
The first problem requires the forward algorithm that computes a marginal distribution
node i from the distribution at the previous node i — 1:

P35 215 5 on i) i—= Pz Ixiww)ZP(xi | %15 @) P s 213 Z1s. < 5 v Ty hc0)e (L 13)

Xi—1

This is a special case of Belief Propagation (BP) that will be discussed later in this chapter
and in various subsequent chapters in the book. In fact there are two forms of BP [367, 46],
and this one is an example of sum-product BP. (The name derives from the summation and
product steps in (1.13).) The other form is described shortly. In the case of the HMM, where
the underlying prior model is simply a Markov chain, sum-product belief propagation is
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quite straightforward and is an exact algorithm for computing the marginal posteriors. After
one complete forward pass, the final marginal distribution is P(xy, z | ®), and so finally

P@z|w)=)_ P(xy,z|o) (1.14)

XN

can be computed as the evidence for a known model w that solves problem 1 above. The
forward pass (1.13) constitutes half of BP, the remaining part being a backward pass that
recurs from node N back to node 1 (details omitted here, but see [382]). Using the forward
and backward passes together, the full set of marginal posterior distributions

Plx| 2, @) ti=531,n' N, (1.15)

can be computed. This is required for problem 3 above, in order to compute the expected
values of the sufficient statistics that are needed to estimate the parameters w by expectation
maximization [121]—also known in the speech analysis literature as the Baum—Welch
method [381].

The second algorithm is the Viterbi algorithm, a dynamic programming optimization
algorithm applied to the state sequence x. It is also equivalent to a special case of max-
product belief propagation, which also is mentioned quite frequently in the book. The aim
is to solve the second problem above, computing the MAP estimate of the state vector as

X = argmax P (X | z, ®) (1.16)

via a forward recursion:

P;i(x;) = P(z; | xi, w) g P | Xi1; ©) Pioq (6 -1) (1.17)

where P; is defined by

Pi(x;) = max Pt s o Xt 2l L a)s (1.18)

Xlrires i—1

Each forward step of the recursion can be viewed as a message-passing operation. In step
i — 1 of the computation, node i — 1 sends the message P;(x;) to node i.

After the forward steps are complete, the final component xy of the MAP solution X can
be computed as

Xy = argmax P,(xy). (1.19)
XN

This is followed by a backward recursion

Xi—1 = argmax P(%; | xi—1, ®) Pi—1(xi-1), (1.20)

Xi—1

after which all components of X are determined.
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The purpose of the discussion in this section has been largely to explain the nature of
hidden variables in simple Markov models, as a precursor to later discussion of hidden
variables in the more complex, two-dimensional kinds of models that are used in vision.
However, even in vision the discrete HMM structure has some direct applications. It has
proved useful for representing temporal problems that are somewhat analogous to speech
analysis, but in which the audio input is replaced by a time sequence of visual features.
Well-known examples include the recognition of American Sign Language [449] and the
recognition of hand gestures for command and control [522]. This book deals mainly with
discrete Markov models—that is, ones in which the states of each X; belong to a finite set L.
However, in vision by far the greater application of timelike HMMSs employs continuous
state-space to represent position, attitude, and shape in visual tracking [333, 477, 50, 253,
209, 124]. In such continuous settings the HMM becomes a classical or nonclassical form
of Kalman filter. Both exact solutions to the estimation problems that arise, and efficient
approximate solutions, are much studied, but are outside the scope of this book.

1.3 Markov Models on Trees

In the following section 1.4, Markov Random Fields (MRFs) are defined as probabilistic
models over undirected graphs. On the way there, we now consider undirected models on
trees as intermediate in complexity between the linear graphs—chains and HMMs—of sec-
tion 1.2, and graphs of unrestricted connectivity. Clearly the HMM graph (figure 1.3b) is a
special case of an undirected model on a tree. Trees appear to be of intermediate complexity
but, perhaps surprisingly, turn out to be closer to HMMs, in that inference can be performed
exactly. The Viterbi and forward-backward algorithms for HMMs generalize to two differ-
ent kinds of message passing on trees. However, once the nodes on two leaves of a tree are
coalesced into a single leaf—for example, leaves b and d in figure 1.4—a circuit may be
formed in the resulting graph, and message-passing algorithms are no longer an exact solu-
tion to the problems of inference.

As with Markov chains and HMMs, in undirected trees the topological structure conveys

two aspects of the underlying probabilistic model. First are the conditional independence
properties, that:

P(xi | {xj, j# i) =P | {x;, (G, )) €&D. (1.21)

The set B; = {j : (i, j) € £} is known as the Markov blanket of i, its neighbors in the tree
(or generally graph) G. The second aspect is the decomposition of the joint distribution, the
generalization of (1.5) and (1.10). How can a distribution with this independence property
be constructed? The answer is, as a distribution that is factorized over the edges of the tree:

P@= [] F.jx xp. (1.22)

(i.j)e€
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a (root)

Figure 1.4

Message passing for MAP inference in tree structured graphical models. A graphical model containing five nodes
(a, b, c, d, and e) connected in a tree structure.

1.3.1 Inference on Trees: Belief Propagation (BP)

The message-passing formulation of the Viterbi algorithm can be generalized to find marginal
distributions over individual variables and the MAP estimate in a tree structured graphical
model. The resulting algorithm is known as belief propagation [367] and has two variants:
max-product, for computing the MAP solution, and sum-product (mentioned earlier), which
allows computation of marginals of individual random variables.

Max-product message passing is similar in spirit to dynamic programming algorithms.
Like the Viterbi algorithm, it works by passing messages between tree nodes in two stages.
In the first stage, messages are passed from the leaf nodes to their parents, which in turn pass
messages to their parents, and so on until the messages reach the root node. The message
m;_, ; from a node i to its parent j is computed as

m;,j(x;) = max P(xj, x;) l_[ my_i(x;) (1.23)
: keNe(i)

where N, (i) is the set of all children of node i. The MAP label of the variable at the root r
of the tree can be computed as

X, = arg max l—[ N (o) (1.29)
5 keNc(r)

Given the MAP label X, of a variable X, the label of any of its children i can be found as

& =max Py, x) [ moix)- (1.25)
3 keN:()
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1.3.2 Example: Max-Product BP on a Five-Node Model

Consider the undirected, tree-structured graphical model shown in figure 1.4. The joint
distribution factorizes as

P(x) = P(xqa, Xp) P(Xa, %) P (%, x2) P(xc, %4). (1.26)

The messages computed by max-product are

Mgcltel = mkFlx., %) (1.27)
Me—sc(Xe) = aE P (x, x.) (1.28)
Mea(Xa) = Hiax P(xq, xc)Mesc(Xc)Mi—sc(Xc) (1.29)
Mp—a(Xa) = e P (xq, xp). (1.30)

The MAP labels can be found as

Xq = MAX Mp—q(Xa)Mc—a(Xa) (1.31)
ST rr)l{%;x P (X4, xp) (1.32)
R = max P (R, Xe)Mesc(Xe)Mac(c) (1.33)
Xg = n}z;x Plxixq) (1.34)
I n}cf:x P(x,, x5) (1.35)

The sum product BP algorithm computes the marginal distributions P (x;) for all variables
X;. It essentially works in a way similar to max-product BP (1.23), except that rather than
taking the max, a sum is performed over the different labels:

mi=s () =ZP(Xj,xi) H My (x;) (1.36)

Xi keNc(i)

where N, (i) is the set of all children of node i. The marginal P(x;) can be computed by
taking the product of the messages sent to the root node i:

Pr)= [] misiGx). (1.37)
keNe (i)

Now, by successively rearranging the tree so that each node i in turn becomes the root node,
P (x;) can be computed for all nodes i.



