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Preface

The present book describes a part of the theory of the so-called Inverse
Problems of Mathematical Physics and some applications of such problems.
Mostly the theoretical aspects of Inverse Problems are discussed. Besides,
we also consider some applications and numerical methods of solving the
problems under study. Descriptions of particular numerical experiments are
also included.

The theory of Inverse Problems of Mathematical Physics is a vast and
intensively developing field of modern mathematics. Plenty of publications
appear, and even a number of specialized journals are published. Because
of extended area of applications, many various statements of problems are
considered, and diverse methods are used for their solution.

We stress attention at providing a concept of versatility and complexity
of inverse problems arising in applications. We did not pursue the aim of
giving the complete review of literature, instead we pointed out the most
popular textbooks and characteristic statements of the problems. Also, we
often pointed out the connections of such problems with various applications
of methods of mathematical simulation. The references cited are mainly of
illustrative character. At the same time, we gave references to the most
frequently cited monographs which contain further references and a more
complete account of the history of this field. Meaning to provide an in-
troduction intended for specialists in other fields, we tried to emphasize
the basic general principles and approaches to solution of various problems,
supplying them with concrete examples of results obtained.

The monograph is arranged as follows. In Introduction we explain our
understanding of the concept of Mathematical Modeling, outline the general
differences between direct and inverse problems, and give strict mathemat-
ical definitions of correct and ill-posed problems.

In Chapter 1, we show up a list of applied areas, where inverse problems
have been successfully used for years. Of course, it is impossible to list
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all such applications, so we took a liberty to mention somehow the basic
fields, some of which historically developed along with the theory of inverse
problems.

In practice, almost all problems are solved approximately, in mathemat-
ical sense. So, in Chapter 2, we give some of the basic definitions related to
various regularizations of inverse problems. We hope that the reader who
does not need strict definitions can get all the general ideas just browsing
the text part of the chapter.

Chapter 3 is dedicated to the problems of Integral Geometry, which are
both classical (accounting Radon transform, e.g.) and non standard. Some
recent results, previously available only through specialized journals, are
included.

Chapter 4 is arranged in non traditional way providing the reader with
a sort of overview of one-dimensional inverse problems. In spite of usual
separation of model equations of hyperbolic and parabolic type, the chapter
is compiled as follows. First, Lamé system is described from physical state-
ment to model simplifications and uniqueness and stability results. Second,
the so-called “quasi-stationary approximation” of Maxwell system is con-
cerned. The point is that the complete proof through analytic relations
between solutions to equations of hyperbolic and parabolic types is given.
Then, a concept of relations among inverse problems for different type gov-
erning equations are discussed. Such concept is not that new, but perhaps is
not well known. The next sections is dedicated to brief descriptions of such
fundamental methods of investigation as the separation of singularities and
the reduction of one-dimensional inverse problem with a focused source of
disturbances to a linear integral equation. Finally, the determination of the
piece-wise constant coefficient for wave equation is considered. The example
of inverse problem (arising in applications) is given, in which case recurrent
algorithm for exact determination of equation coefficients is available.

In Chapter 5 we consider some inverse problems for the coupled Maxwell
and Lamé systems. First of all, the solution of the one-dimensional inverse
problems for the equations of electromagnetoelasticity in the case of seismo-
magnetic interaction is studied. Then we give some results of the solution
of inverse problems for the system of electromagnetoelasticity in the case of
piezoelectric effect. In the next section, the linear process of interaction of
electromagnetic and elastic waves in a weakly conducting elastic medium is
considered. Finally, we give some results of solution of direct and inverse
problems for the system of electromagnetoelasticity in the case of nonlinear
interactions between electromagnetic and elastic fields.



Preface iii

Chapter 6 contains some examples of numerical solution of the different
type inverse problems arising in applications. The first section is a small
survey in numerical methods for inverse problems. The next section repre-
sents the numerical solution of a 3D inverse kinematic problem of seismics.
Then we describes how the proposed algorithm of numerical solution could
be used for the determination of the structure of the Earth’s upper mantle.
The numerical solutions of two inverse problems of electromagnetoelasticity
are discussed in the next section. We would like to draw attention on the
last section, which represents the results of numerical modeliig of coastal
profile evolution. This application of inverse problems is new and not well
developed at the moment.
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Introduction

0.1. THE CONCEPT OF MATHEMATICAL SIMULATION

The statement of direct and inverse problems of mathematical physics im-
plies preliminary schematic representation of the real process in a certain
mathematical form. At present, modern technology is inconceivable without
mathematical modeling, which is understood as replacement of the original
object under investigation by its model. The aim of such a replacement is
to study the properties of the object with the help of its model.

There are ezperimental (physical) modeling and theoretical (mathemat-
ical) simulation. In the former case the process is studied on the basis
of real experiments on mock-ups, physical models, laboratory installations,
etc. Mathematical simulation consists in construction and investigation of
quantitative values for physical parameters through a simplified model of
the process under study, which is formulated in mathematical terms. As a
rule, a mathematical model should be adequate to the physical process.

Mathematical models contain unknown characteristics. The choice and
evaluation of these characteristics is a difficult problem which is solved on
the basis of accumulated experience, available experimental data, physical
laws, etc. To develop a mathematical model it is necessary to pass through
two main stages: identification, i.e., the choice of the type (structure) of the
model, and determination of the numerical values of the model parameters
and characteristics.

The structure of a model is conceived as a qualitative character of the
mathematical description of the processes under investigation. Thus, phys-
ical laws are most frequently represented in the form of differential equa-
tions. One can distinguish models with concentrated parameters, in which
case physical parameters are independent of space and only their evolution
in time is the subject of study. Such models are described by systems of
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Ordinary Differential Equations. On the contrary, models with distributed
parameters involve spatial distribution of physical fields in addition to tem-
poral evolution. Such models are based on Partial Differential Equations
(equations in partial derivatives).

Such classification is very rough. Indeed, one can distinguish stationary
(steady-state) and non-stationary (dynamic) models, linear and nonlinear
models, one-dimensional and multidimensional (in space variables) models,
etc.

Henceforth we shall deal with models represented in the form of differ-
ential equations in partial derivatives (PDE’s). According to the general
theory of such equations, a number of additional conditions should be at-
tached to the equation itself to single out a unique element from the whole
of the set of solutions to this equation.

We shall mostly speak about linear governing equations of second order.
It means that the changes of physical variables (displacement, temperature,
concentration, field intensity, etc.) are described by linear differential equa-
tions, whose coefficients represent the physical properties of the medium
where the process being modeled takes place.

Example 0.1.1. The equation

2 2

iﬁ:JQﬁ, (0.1.1)

ot? az*
describes small oscillations of a string. In this case the function u(z,t)
is the displacement of the string, at a point z and at a moment ¢, from
the equilibrium state, which is supposed to coincide with the z-axis. The
coefficient ¢ characterizes the speed of disturbance propagation along the
string. If the string is bounded, z € [0,!], and fixed at the endpoints z = 0

and z = [, then the boundary conditions for (0.1.1) have the form
u(0,t) =u(l,t) =0, teR,, (0.1.2)

where R, = [0,00). To set the boundary conditions is not sufficient to single
out a unique solution to (0.1.1). We arrive at a unique solution only if some
additional initial conditions are used. In this case they are the initial string
displacement and the initial velocities of its points:

0
u(z,0) = p(2), 79%(z,0) =y(z), z€[0,]. (0.1.3)
One can prove that conditions (0.1.2) and (0.1.3) define a unique solution

to (0.1.1).
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0.2. DIRECT AND INVERSE PROBLEMS

In some statements, the coefficients of the governing equations are considered
as given, thus, the problem is to study the properties of solutions to the
model equations. In the case where the initial and boundary conditions are
set “properly” (there exists a unique solution to the problem under study
and this solution depends continuously on the parameters of the problem),
we shall refer to such statements as Direct Problems.

The statement of each direct problem implies prescribing some set of
functions, i. e., the coefficients of the equations, sources (right-hand sides of
the equations), external actions (nonhomogeneities and the coefficients of
the boundary conditions), etc. In the result of solving a direct problem, a
new set of functions — the solutions to the direct problem — is placed into
correspondence to that original set. Thus, the operator of a given direct
problem is defined; i.e., the operator which maps the data of the problem
into its solution.

Assume now that some functions among the data of a “properly stated”
direct problem are unknown; and, instead, some additional information on
the solution of the problem is given. Such problems will be referred to as
Inverse Problems.

In particular, inverse problems of mathematical physics are often under-
stood as problems of determining the internal characteristics of a medium
(as a rule, they cannot be measured directly) from a certain information
on the values of various physical fields (parameters) at the boundary of a
certain domain.

Example 0.2.1. The wave propagation in a vertically-inhomogeneous
medium can be described by the following problem:

0%u 5 .
oz = ¢ @)y, zeR, teR (0.2.1)
ul, o =0, =R, (0.2.2)
0 _
— = f(t)g(z1,2), (z1,72,t) € RZ x Ry, (0.2.3)
8IE3 z3=0

where ¢(z3) is a function characterizing the velocity of wave propagation in
the medium, and f(¢) and g(z;,z2) describe the duration of action and the
space distribution of sources on the free surface, respectively.

Inverse Problem 0.2.1 (IP 0.2.1). Let the wave propagation be
described by the system (0.2.1)—(0.2.3). It is necessary to reconstruct the
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velocity distribution (to find the function c¢(z3)) in the medium and/or the
characteristics of the sources, f(t) and g(z1,z2), using the additional infor-
mation about the vibration regime of the observation surface z3 =0

Ulgz=0 = uo(z1, 22, 1),

t € [0,T], (z1,22) € S C {z € R® | z3 = 0}. (0.2.4)

To clarify better the relations and distinctions between Direct and In-
verse Problems of Mathematical Physics, we give their “cause-and-effect”
interpretation. Consider the given physical parameters of a medium (e. g.,
density, conductivity, etc.) along with the boundary and initial conditions,
the geometry of the domain, etc. as causal characteristics. As effects we ob-
tain the states of physical fields (temperature or concentration distributions,
velocity fields, etc.), which are determined by solving the corresponding di-
rect problem. So, to solve a Direct Problem means to describe the effect
of given causal factors. On the contrary, solution of an Inverse Problem is
interpreted as reconstruction of causal characteristics from their effect.

Therefore, in contrast to Direct Problems, the statements of some Inverse
Problems do not correspond to any physically realizable events. Indeed, one
cannot invert the direction of time-flow (in order to reconstruct the initial
distribution of a physical field from its state at a given moment); it is also
impossible to reverse the process of reagent diffusion or heat propagation.
In this sense, one can say that a number of inverse problems are “physically
incorrect”. In mathematical statements, naturally, this difficulty displays
itself as mathematical incorrectness, which results in such complications as
instability of a solution, multiple solutions, even absence of solutions, etc.
These natural causes give rise to difficulties in development of reliable meth-
ods and algorithms to solve inverse problems.

That is why, in spite of existence of many general methods for solution of
inverse problems, each concrete statement requires special theoretical treat-
ment. Note that without such preliminary “analytic” investigation, it is
practically impossible to create cost-effective and efficient numerical algo-
rithms.

A natural approach to solving complex problems consists in constructing
a series of models with increasing complexity that describe the initial state-
ment more and more comprehensively. Consecutive study of these models
allows us to determine, at initial stages, the most general qualitative proper-
ties of solutions. Later these general properties are determined more exactly
in the course of study of more complex models.
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0.3. ON CORRECTNESS OF DIRECT AND INVERSE
PROBLEMS OF MATHEMATICAL PHYSICS

The notion of correctness is usually considered in the theory of Direct Prob-
lems of Mathematical Physics. When dealing with Inverse Problems of
Mathematical Physics it is convenient to alter this notion a little. Below
we give a short overview.

0.3.1. General notes about correct problems .

The theory of differential equations states that a differential equation defines
a whole set of its solutions which depend on a certain number of arbitrary
constants or arbitrary functions. For the problem to have definite physical
sense, we need to single out a unique solution. Usually it is achieved by
setting initial and boundary conditions. This is illustrated by examples
below.

Example 0.3.1.

Consider the so-called heat equation, which describes, e.g., the tempera-
ture evolution in a cooling body,

ou

— = At 0.3:1
5 = Du (0.3.1)
in a cylindrical domain G = Q x R, where  C R? is a domain bounded by
a closed surface S. To single out a unique solution in this case it is sufficient
to set the heat regime on the surface S, for instance,

u(z,t) =0, T €S, te Ry, (0.3.2)
and the initial distribution of temperature inside §2,
u(z, 0) = g{z), z €. (0.3.3)

Setting of the initial and boundary conditions is aimed at singling out a
unique solution from the whole class of solutions to a differential equation.
But the number of these conditions should be minimal, for otherwise they
may contradict one another, in which case a solution to such problem does
not exist.

As it is known (see, e.g., LadyZenskaya, Solonnikov, and Ural'tseva,
1968), there exists a unique solution to the problem (0.3.1)-(0.3.3). More-
over, small enough perturbations of the initial profile g(z) cause arbitrarily
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small deviations of this solution over any finite time interval ¢ € [0,7"]. One
should remember that the main goal of solving mathematical problems is
to describe certain physical processes in mathematical terms. In this case
the initial data are obtained experimentally; and since measurements cannot
be absolutely precise, the data contain measurement errors. For a mathe-
matical model to describe a real physical process, the problem should be
supplemented with some additional requirements reflecting, in a physical
sense, the fact that the solution should have only small variations under
slight changes in initial data or, to put it conventionally, the stability of the
solution under small perturbations in the initial data.

Generally speaking, in such case the problem is said to be correct, while
in alternative cases, ill-posed or incorrect.

0.3.2. Mathematical definitions

Now we put the above general idea on the strict theoretical (mathemati-
cal) basis. Given a differential equation with concrete initial and boundary
conditions, we can pose the problem of finding its solutions belonging to
various functional spaces. The choice of a concrete function class depends
on the physical interpretation of the problem. For example, we can consider
the problem of finding a solution to (0.1.1)-(0.1.3) in the class of func-
tions C%(D), where D = {(z,t) | z € [0,1], t € R}, or in other classes. In
other words, one can choose a functional space of solutions to a differential
equation in quite an arbitrary way.

The functions involved in the boundary and initial conditions of the
problems for differential equations cannot be chosen arbitrarily; they should
ensure that the solution belongs to the chosen functional space. For this,
they should belong to the certain special functional space corresponding to
the space of solutions. This becomes clearer if one considers problems for
differential equations from the viewpoint of functional analysis. Choose a
space U fqr the solutions of a differential equation. The differential equation .
together with some additional conditions defines the operator A that relates
any solution u € U to the set of functions involved in the additional (initial
and/or boundary) conditions. For (0.1.1) these are the functions ¢ and v, for
(0.3.1) it is the function g. Considering this set of functions as an element f
of a functional space F', one comes to a conclusion that solving a problem for
a differential equation is equivalent to solving the formal operator equation

Au=f (0.3.4)

under the condition that v € U.



