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Preface

Solutions to problems in quantum mechanics are important for scientists,
engineers and many others. This book gives a collection of most standard
methods in quantum mechanics together with their programs in Symbol-
icC++, Maxima, Mathematica and Maple. Advanced topics in quantum
mechanics are also included. In most cases the output of the programs is
also displayed. Most of the problems are implement in SymbolicC++ and
Maxima. For a number of selected problems the program are implemented
in Mathematica, Maple and C++. In the first edition the programs had
been implemented in Reduce.

SymbolicC++, Maxima, Reduce, Mathematica and Maple are the most
widely available and simple to use computer algebra systems. They enable
users to manipulate algebraic expressions and equations symbolically. For
example, we can differentiate and integrate symbolically. Number crunch-
ing can also be done. Moreover, symbolic manipulation and number crunch-
ing can be combined in one program.

Beside the standard methods, modern developments in quantum mechanics
are also included. These include Bose operators, Fermi operators, coherent
states, squeezed state, gauge theory, quantum groups and super Lie alge-
bras. All the special functions (such as Hermite, Chebyshev, Legendre) im-
portant in quantum theory and Hilbert space theory are also implemented.

The level of presentation is such that one can study the subject early on
in ones education in science. There is a balance between practical compu-
tation and the underlying mathematical theory. The book is ideally suited
for use in a quantum mechanics lecture.

The web sites for the different packages are:

v



vi Preface

Maxima: http://maxima.sourceforge.net

SymbolicC++: http://issc.uj.ac.za

Reduce: http://reduce-algebra.sourceforge.net

Maple: http://www.maplesoft.com

Mathematica: http://www.wolfram.com

Without doubt, this book can be extended. If you have comments or sug-

gestions, we would be pleased to have them. The email addresses of the
authors are:

steebwilli@gmail.com
yorickhardy@gmail.com
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1. Introduction

Most of the programs are written in SymbolicC++ and Maxima. A few
are written in Maple and Mathematica.

SymbolicC++ is case-sensitive. In SymbolicC++, variables are created
with the Symbolic("name") constructor, for example Symbolic x("x").
Additional parameters specify dimensions for vectors, Symbolic v("v",3),
or matrices Symbolic A("A",2,2). The tilde operator (~) makes a non-
commutative variable from a commutative one and vice versa. The usual
functions such as sin(x), cos(x) and exp(x) are provided. Arbitrary
functions y(z) are written as y[x]. In SymbolicC++ the command for
differentiation is df and for integration integrate. For example

cout << df ((x"3)+2%x,x) << endl; // 3*x”(2)+2
cout << integrate((x~2)+1,x) << endl; // 1/3*x~(3)+x

The command for solving equations is solve. For example
cout << solve((x~2)+(a+1)x*x+a==0, x) << endl;

Substitutions are achieved with the indexing operator [] or the method
subst. The method subst_all works like subst except that it tries to
perform the substitution on the resulting expression until no further sub-
stitution is possible.

cout << (x*y + (x72))[x==2] << endl; // 2¥y+4
cout << (xxy + (x72)).subst(x==2) << endl; // 2xy+4

SymbolicC++ also includes methods for obtaining the coefficients of ex-
pressions (coeff). Manipulations with matrices are also implemented, for
example matrix multiplication, the Kronecker product (kron), direct sum,
trace, determinant and many other operations. For example the 3 x 3
identity matrix could be represented by

Symbolic I3 = Symbolic("",3,3).identity;
An example to represent the 2 x 2 matrix
(¢ 2)
c d
with noncommutative elements a, b, ¢, d would be

Symbollc a(nan , b("b"), C("C"), d("d");
a="a;b="b; c="c;d="d; // noncommutative
Symbolic T = ((a, b),(c, d));
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Since SymbolicC++ is embedded in C++ one can utilize the powerful pro-
gramming techniques of C++ in SymbolicC++.

Maxima is case-sensitive. To differentiate x3 4+ 2z + 2 with respect to = we
write

diff (x~3+2xx+2,x)

To integrate exp(—x) + 2 * = with respect to z we write
integrate(exp(-x)+2*x,x)

When we want to integrate this expression between 0 and 2 we write
integrate(exp(-x)+2*x,x,0,2)

The solve command tries to solve equations. For example
solve(x~2+(a+1)*x+a=0,x)

Another important command is the substitution command subst. For
example

subst (x=2,x*y+x"2)

with the output 2 y + 4. Amongst others, Maxima includes the following
mathematical functions sqrt (square root), exp (exponential functions),
log (natural logarithm In, and the trigonometric functions sin, cos, tan.
Maxima reserves %i for v/—1, %pi for the number 7 and %e for the number
e. All the necessary matrix manipulations can also be done. Maxima can
also be utilized as programming language.

Maple is also case-sensitive. In Maple the differentiation command diff.
For example

diff (x"3+2*x,x)

Integration is the command int. For example
int(x"2+1,x)

and if we want to integrate between boundaries
int (x"2+1,x,0..2)

Maple has two different commands for solving equations. The command
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solve(x~2+(1+a)*x+a=0,x)

solves the equation 2 + (1 + a)z + a = 0 with respect to z and gives the
result z = —1 and £ = —a. The command

fsolve(x~2-x-1=0,x)

solves the quadratic equation 2 —z — 1 = 0 and gives the output —0.618...

and 1.618.... The substitution command is given by subs. For example the
command

subs (x=2,x*xy+x"2)

gives 2y + 4. Among others, Maple includes the following mathematical
functions: sqrt (square root), exp (exponential function), log (natural
logarithm) and the trigonometric functions sin, cos, tan with the argu-
ments in radians. Predefined constants are Catalan, Pi, gamma, infinity
false, true. All the operations for matrix manipulations are also provided.
Maple can also be utilized as programming language.

Mathematica is also case-sensitive. In Mathematica the differentiation com-
mand is D. For example

D[x~3+2*x,x]

Intégration is the command Integrate. For example
Integrate[x"2+1,x]

and if we want to integrate between boundaries
Integrate[x~2+1,{ x,0,2 }]

The command solve in Mathematica can solve a number of algebraic equa-
tions and also systems of algebraic equations. For example

solve [x~2+(1+a)*x+a==0,x]

solves the equation 22 + (1 + a)z + a = 0 with respect to x and gives the
result z = —1 and £ = —a. The replacement operator /. applies rules to
expressions. Consider the expression = * y + z * x. Then

X*¥y+x*x /. x=> 2

gives 4+ 2y. Among others, Mathematica includes the following mathemat-
ical functions: Sqrt (square root), Exp (exponential function), Log (natural
logarithm) and the trigonometric functions Sin, Cos, Tan with the argu-
ments in radians. Predefined constants are I (for /—1), Catalan, E, Pi,
Degree, GoldenRatio, EulerGamma. All the operations for matrix manipu-
lations are also provided. Mathematica can also be utilized as programming
language.



2. Conservation Law and Schrodinger Equation

The wave function 1) satisfies the Schrédinger equation

o

lhgt'

= Hy (1)

where the Hamilton operator H is given by

. h2 o2 9 2?
H:= A+ V(r), A'_a_xf+8—z§ 3 (2)

In the SymbolicC++ program and Maxima program we show that the
conservation law

ap o . 0s1  0Osy  Os3
Bt + divs =0, divs := e + B2, + 925 (3)

holds, where the probability density p is defined by

pi=V*Y (4)
and the probability current density
si= (VY - uve) )
" 2mi '
We also have
/3 P* (x)(x)dxdxodrs =1 (6)
R

i.e. the wave function 7 is normalized. The program is written for one-space
dimension, but can easily be extended to higher dimensions. In one-space
dimension we have

82
Ai= 922 (7)
_h O oyYT
* 7 omi (d} oz v Or ) ' ®)
We take into account that
J 81/)‘ S
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// conservation.cpp

#include <iostream>
#include "symbolicc++.h"
using namespace std;

int main(void)

{

Symbolic psi("psi"), psis("psis"), x("x"), t("t"), V("V");
Symbolic hb("hb"), i("i"), m("m");

psi = psilx,t]; psis = psis[x,t];

Symbolic rho = psis*psi;

Symbolic ril df (rho,t);

Symbolic r2 r1[df (psi,t)==ixhb/(2+*m)*df (psi,x,2)-i*V*psi];
Symbolic r3 = r2[df (psis,t)==-i*hb/(2*m)*df (psis,x,2)+i*V*psis];

Symbolic s = -i*hb/(2*m)*(psis*df (psi,x)-psi*df (psis,x));
Symbolic r4 = df(s,x);

cout << "result = " << r4 + r3 << endl;

return O;

}

The output is

result = 0

The Maxima program is

/* conservation.mac */

depends (psi,x,psi,t);
depends (psis,x,psis,t);

rho: psis*psi;

ri: diff(rho,t);

r2: subst(%i*hb/(2*m)*diff (psi,x,2)-%i*V*psi,diff(psi,t),rl);

r3: subst(-%i*hb/(2*m)*diff (psis,x,2)+%i*V*psis,diff(psis,t),r2);
s: —%i*hb/(2*m) * (psis*diff (psi,x)-psixdiff (psis,x));

r4: diff(s,x);

result: expand(r4 + r3);

print (result);



3. Wave Packet and Free Schrodinger Equation

The Schrédinger equation for the free particle in one space dimension is
given by

th— = ———. (1)
This equation admits the solution (wave packet)

B(z,t) = B - z2
ST AT intyma2) 72 TP\ 2a2 (1 + iht/ma?)

where a has the dimension of a length and B is determined by normalizing
1) for a fixed t, i.e.,

(2)

[ v@oue =1 3)
—o00
For t = 0 we have
z2 y
— B o —
w(o0) = Bexp (-2 (@
with the density
2 z?
ple,0) = ¥ (@,000(,0) = Bl exp (). )
Thus at t = 0 the particle is localized with |z| < a. Using
V(#(2),8(t)) = ¥(z,t), F=z/a, T="ht/(ma?) (6)
we can cast the Schrodinger equation into the dimensionless form
a7 2 7
ot 2 072

with

Y(ZE, ) = exp(—Z2/2). (8)

B
(1 +it)1/2
In the SymbolicC++ program we show that (8) is a solution of (7). We
also find ¥*. The density is given by p = ¥n)*. We show that 1)* satisfies
the dimensionless Schrédinger equation

o 19%)*
ot 2 0z ©)

ih

In the Maxima program we utilize (7) and the ansatz (8).
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// wavepacket.cpp

#include <iostream>
#include "symbolicc++.h"
using namespace std;

int main(void)

{

using SymbolicConstant::i;

Symbolic xt("xt"), tt("tt"), B("B");
Symbolic f1 = B/(sqrt(1+i*tt));

Symbolic f2 = exp(-(xt*xt)/(2*x(1+ixtt)));
Symbolic psit = f1xf2;

Symbolic resl = df(psit,xt,2)/2; resi
Symbolic res2 = i*df(psit,tt); res2
Symbolic resultl = resl + res2;

cout << "resultil " << resultl << endl << endl;

resl/f2;
res2/f2;

Symbolic f1s = fi[i==-i]; Symbolic f2s = f2[i==-i];
Symbolic psist = flsxf2s;

Symbolic res3 = df (psist,xt,2)/2;

res3 = res3/f2s;

Symbolic res4 = -i*df(psist,tt);

res4 = res4/f2s;

Symbolic result2 = res3 + res4;

cout << "result2 " << result2 << endl << endl;
return O;

}

The Maxima program is

/* wavepacket.mac */

depends (psi,x,psi,t);

depends (f1,x,f1,t);

depends (f2,x,f2,t);

f1: B/(sqrt(1+%i*hb*t/(m*a2)));
£2: exp(-(x*x)/(2*xa2*(1+%i*hb*t/(m*a2))));
psi: f1xf2;

resl: hb*hb*diff (psi,x,2)/(2*m);
res2: %ixhbxdiff(psi,t);
resultl: (resl+res2)/f2;
result2: expand(resultl);
print(result2);



