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1 - Introduction

M.F. ATIYAH

Lie groups and their representations occupy an important
place in mathematics, with applications and repercussions over
a wide front. The connections with various aspects of physics
are of long-standing, as are the intimate relations with dif-
ferential equations and differential geometry. More recently
the global topology of Lie groups has provided a deep link with
questions of number theory. Finally, when viewed as 'non-
commutative harmonic analysis' the theory of representations
is a branch of linear analysis.

The symposium held in Oxford in July 1977 was designed to
provide an introduction to the representation theory of Lie
groups on as wide a front as possible. The main lectures,
which are reproduced in this volume, should give the reader
some indication of the scope and results of the subject. In-
evitably there are gaps in various directions, and some areas
are treated in greater detail than others. This reflects the
particular interests of the participants and is not to be
taken as a measure of relevant importance. Broadly speaking
the symposium centred on the classical case of real Lie groups
and treated only briefly the p-adic and finite fields.

In Part I of these notes we have collected together the in-
troductory material and in Part II, the more advanced lectures.

The symposium was jointly sponsored and financed by the
Science Research Council and the London Mathematical Society.
The editorial work involved in turning lectures into manuscript
was ably supervised by Glenys Luke and I am grateful to her,
to the lecturers and to all others involved for their help in

producing this volume.












2 - Origins and early history of the theory of
unitary group representations

G.W. MACKEY
Harvard University

The theory of group representations was created by Frobenius
in 1896 in a more or less deliberate attempt to generalize the
theory of characters of finite abelian groups. The latter notion
was only formally defined in full generality by Weber in 188l1.
Weber's definition was an abstraction of one given three years
earlier by Dedekind and Dedekind was more or less directly in-
spired by Gauss' implicit use of characters of order two in his
Disquisitiones Arithmeticae published in 1801,

To go back a bit further, Lagrange in the early 1770's wrote
a two-part memoir making a systematic study of equations of the

form
sz + Bxy + Cy2 =n

Here A, B, C and n are integers and the problem is to find
all integer pairs x,y satisfying the equation. Various special
cases had been studied by Fermat in the seventeenth century and
by Euler in the eighteenth and Lagrange's aim was to construct a

systematic general theory. He observed that the transformation
xl = ax +by , y1 = cx +dy

where a, b, ¢ and d are integers with ad-bc =1 carries
the equation into an equivalent one having the same values for
the 'discriminant' B2-—4AC and proved that there can be at
most a finite number of inequivalent equations with a given
value D = B2—4AC . This number, called the class number, is

of key importance in the developed theory. Gauss in the work



cited above defined a notion of 'composition' for equivalence
classes of forms of a given discriminant (his definition of
equivalence was not quite the same as that of Lagrange) and
showed in effect that under this composition law the equivalence
classes form a group. We say 'in effect' because the concept
of 'group' did not then exist. In developing the theory of
equations whose class number is greater than one, he used what
amounted to characters of order two of the group of equivalence
classes and in this connection introduced the word 'character'.
As defined by Weber, a character of a finite abelian group
A 1is a homomorphism x =+x(x) of A into the multiplicative
group of complex numbers of modulus one. It is evident that
the set A of all characters of A is itself a finite abelian
group under multiplication. Moreover, it is not hard to see
that every complex-valued function f on A may be written

uniquely as a linear combination of characters

1 —_—
f = z C .x where C_ = —/= z f(x) x(x)
XEA X X o (4) XeA
and o(A) 1is the order of A . The analogy with Fourier series

expansions is evident and many arguments in nineteenth century
number theory may be interpreted as Fourier analysis on finite
abelian groups. Dirichlet, in particular, used characters on
the multiplicative group of units in the ring of integers mod m
and finite Fourier analysis is the key to one step in his cel-
ebrated proof that there are an infinite number of primes in any
arithmetic progression which can not be extended to contain zero.
The primary impetus to the development of group theory itself
was provided by another long memoir of Lagrange published shortly
after the one mentioned above. In it he made a penetrating study
of the solutions of polynomial equations by radicals. He managed
to understand in a unified way the known methods for solving
equations of the second, third and fourth degrees and tried

(nearly successfully) to understand why the fifth degree equations



had proved so intractible. In particular, he saw that the key
to the question lay in studying what happened to rational func-
tions of the roots when the roots were permuted amongst them-
selves. Inspired by this work of Lagrange, Cauchy founded the
theory of permutation groups in 1815 and by 1831, Ruffini and
Abel had proved the impossibility of solving the general quintic
and Galois had worked out his beautiful theory relating solv-
ability to the structure of the 'Galois group' of the equation.
It is to Galois that we owe the term group and the concept of
normal subgroup. On the other hand, the theorem that the order
of a subgroup divides the order of the group is already implicit
in Lagrange's paper.

For various reasons, including Galois' premature death at the
age of 20, his paper was not published until 1846. At this time
Hermite and Kronecker were young men at the beginning of their
careers and both became quite active in developing Galois' ideas.
However, group theory did not begin to be widely known or to be
applied outside of a rather narrow context until around 1870.

At that time, three events occurring in the space of as many
years, stimulated a considerable expansion in the scope of group
theory as well as an increased awareness of the existence and
importance of this new branch of mathematics. In 1869 Sophus
Lie began to apply the ideas of Galois to differential equations
and initiated the systematic study of continuous (actually dif-
ferentiable) groups. In 1870 C. Jordan published the first book
ever to be written on group theory. His Traités des substi-
tutions et des equations algébrigues contained among other
things a clear exposition of Galois theory. Finally, in 1872
Felix Klein announced his celebrated Erlanger program for uni-
fying geometry through group theory and shortly thereafter began
a sort of publicity campaign to convince mathematicians of the
fruitfulness and wide applicability of the group theoretic point
of view.

The parallelism between Fourier analysis on finite commutative



groups as indicated above and Fourier analysis as more commonly
understood arises of course because the functions x - e ' are
precisely the continuous characters on the compact continuous
group obtained from the additive group of the real line by fac-
toring out the discrete subgroup of all integer multiples of

2m . However, the fact that such a connection exists does not
seem to have been explicitly noticed until the middle 1920's.
The theory of Fourier series and integrals arose in the early
nineteenth century to meet the needs of mathematical physics.
In the middle of the eighteenth century D. Bernoulli, D'Alembert
and Euler succeeded in extending Newton's analysis of particle
motion to an analysis of the motion of fluids and deformable
solids. More precisely, they found the analogues of Newton's
equations of motion. These turned out to be differential
equations in which partial derivatives of functions of several
variables replaced the ordinary derivatives in Newton's work.
Such partial differential equations presented mathematicians
with a new and difficult challenge which was by no means met
immediately. Progress was slow until Fourier submitted his
celebrated memoir on heat conduction to the French academy in
1807. The methods which Fourier used and which are now taught
to every mathematics and physics student were quickly seen to
apply to many of the partial differential equations arising in
physical problems and by the time Fourier's book on heat con-
duction appeared in 1822, Poisson and Cauchy had been active
for years in applying them to a variety of problems. Actually
Fourier's expansibility theorem was nearly discovered half a
century earlier in connection with studies of the one dimen-

sional wave equation
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However, prejudices of the time made the result implausible to

many and in the end the key clues were ignored. Lagrange who



developed and systematized the work of Euler, Bernoulli and
D'Alembert and incorporated it into his great synthesis of 1787
Mécanique Analytique came close to finding Fourier's theorem
but he also refused to accept it. In fact he was one of the
referees who at first rejected Fourier's memoir of 1807.

A group representation as defined by Frobenius is a homo-
morphism x +—LX of a finite group G into the multiplicative
group of all nxn non-singular complex matrices for some
n=1,2,... . Its character XL is the complex valued function
on G defined by XL(X) = Trace (LX) . This definition evi-
dently reduces to that of Dedekind and Weber when n = 1. More
generally one shows that XL(X) = XM(x) if and only if L and
M have the same dimension (or degree) n and there exists a
non-singular nxn matrix W such that W—lLXW = MX for all x.
One then says that L and M are equivalent. One also shows
that for each finite group G there exists a unique finite set
XqsXgseees X, of linearly independent characters on G such
that the finite linear combinations Xy * MoXy *oeee noX.
(where the nj are non-negative integers) are precisely the
characters of G . Here r 1is the number of distinct conjugacy
classes of G and finding the Xj (the so-called irreducible
characters) can be a highly non-trivial problem.

The immediate stimulus for Frobenius' introduction of group
representations and their characters was a problem of Dedekind
concerning a little-known concept - the group determinant - which
he began to work on in the 1880's. He could solve it in some
cases using characters of finite groups and solicited the help of
Frobenius in dealing with more general ones. Apparently the
problem in group determinants was suggested by the study of the
discriminant of an algebraic number field. Frobenius succeeded
using his new generalized characters — which he invented ex-—
pressly for the purpose. The exact story of fhe relationship
between Dedekind's problem and the introduction of higher di-

mensional characters is complicated and has only recently been



elucidated. For further details the reader is referred to three
recent articles by Thomas Hawkins in Archiv for the history of
the exact sciences.

For the next quarter of a century or so the theory of group
representations was a branch of pure algebra concerned more or
less exclusively with the development of Frobenius' ideas by
Frobenius himself, by Burnside and by I. Schur and others. There
were striking applications to the structure theory of finite
groups (for example, the theorem of Burnside that a group whose
order is divisible by only two primes is solvable) but none out-
side of group theory. However, in the 1920's the situation
changed radically. The scope of the theory was enlarged so as
to apply to compact Lie groups by work of Hurwitz, Schur, Cartan
and Weyl and at the same time important applications were found
to number theory and to the new quantum physics.

In 1924 Schur observed that one could apply earlier ideas of
Hurwitz on integration over manifolds to define integration of
continuous functions defined on compact Lie groups. Using
this as a substitute for summing over the group he was able to
extend the main ideas of group representation theory from finite
groups to compact Lie groups. He also was able to determine all
of the irreducible representations of the orthogonal groups. In
the next three years Weyl determined the irreducible represen-
tations (and their characters) of all the classical compact semi-
simple Lie groups and in collaboration with F. Peter proved the
celebrated Peter-Weyl theorem. This asserts in essence that the
matrix coefficients of the irreducible representations of a com-
pact Lie group are plentiful enough so that every continuous
function on the group can be uniformly approximated by their
linear combinations. It follows that one can obtain an ortho-
normal basis for the square integrable functions on the groups
whose members are such matrix elements. When the group is
commutative the basis elements are necessarily complex multiples

of characters and the Riesz-Fischer theorem in the theory of

10



Fourier series is a special case. It was in this work of Weyl
that the group theoretical character of classical harmonic analy-
sis was first clearly pointed out. Weyl also pointed out that
the classical theory of expansions in spherical harmonics has a
group theoretical interpretation and moreover one demanding con-—
sideration of higher dimensional representations of a non-
commutative group. This observation of Weyl was generalized and
further developed by E. Cartan. On the other hand Weyl made
heavy use of earlier work of Cartan on the Lie algebras of the
classical compact Lie groups in his determination of their rep-
resentations. Cartan in earlier work had given what amounted to
an infinitesimal version of Weyl's results.

The first application of the theory of higher dimensional
group representations outside of group theory itself seems to
have been made by E. Artin in 1923. Let K be an algebraic
number field; that is, a finite extension of the field Q
of all rational numbers and let RK be the ring of all
'algebraic integers' in K . Let H be any subgroup of
the group G of all automorphisms of K and let kH be
the subfield of all elements of K which are carried into
themselves by all members of H . The so-called zeta function
CK of K 1is defined for all Re(s) > 1 by the convergent

Dirichlet series

where ¢(n) 1is the number of ideals I in RK whose 'norm'
N(I) is =n . By definition N(I) is the number of elements
in the quotient ring RK/I . As shown by Hecke a few years

earlier ¢ is always continuable to a meromorphic function

K
defined in the whole complex plane and satisfying a simple

functional equation relating the values of cK(s) to those of
QK(l—s) . Of course, one can define CkH in the same way and

the question arises as to the relationship between these two

11



zeta functions. In the special case when H 1is commutative

it was known from previous work of Takagi that CK factors as

a product of ng and o(H)-1 'L functions'. These L func-
tions are also analytically continuable Dirichlet series of the

form

which satisfy simple functional equations and have no poles.
Artin extended this result in two ways. First he obtained a
completely different factorization of CK/ZkH valid for all H,
commutative or not, and with the factors parameterized by the
irreducible characters of H other than the trivial one. The

corresponding factorization of ¢ reflects the decomposition

K
of the regular representation of H in that each factor occurs
as many times as the corresponding irreducible representation
occurs in the regular representation of H . Secondly when H
is commutative he showed that his (conceptually) completely
different factorization was the same as that of Takagi. In
other words he showed that Takagi's results implied a rein-
terpretation of the classical L functions in terms of one
dimensional characters of H and that the theory of group rep-
resentations could be used to remove the restriction that H

be commutative. Artin's generalized L functions are known to
share many properties of the classical ones. However it is
still an open question as to whether they are entire.

A rather different application of the theory of group rep-
resentations to number theory was made by E. Hecke in 1928,
Actually this application was made indirectly via the theory of
modular forms - a theory having extremely close connections
with number theory. Let & and k be positive integers and
ab) for which

cd
ad-bc =1 and a-1, b, ¢ and d-1 are all integer multiples

let T  be the group of all 2x2 matrices (

of & . Then a modular form of weight k and level £ 1is an

12



