AN 'INTRODUCTION TO COMPUTER SCIENCE

Using Java"

SAMUEL N. KAMIN M. DENNIS MICKUNAS EDWARD M. REINGOLD

An Introduction
to Computer Science
Using Java

Samuel N. Kamin
University of Illinois at Urbana—Champaign

M. Dennis Mickunas

University of Illinois at Urbana—Champaign

Edward M. Reingold

University of Illinois at Urbana—Champaign

T wes
fisMcGraw-Hill
Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis

Bangkok Bogotd Caracas Lisbon London Madrid
Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto

WCB/McGraw-Hill

A Division of The McGraw-Hill Companies
AN INTRODUCTION TO COMPUTER SCIENCE USING JAVA®

Copyright © 1998 by the McGraw-Hill Companies, Inc. All rights

reserved. Printed in the United States of America. Except as permitted

under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the publisher.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

This book is printed on acid-free paper.
234567890DOC/DOC 9098
ISBN 0-07-034224-5

Vice president and editorial director: Kevin Kane
Publisher: Tom Casson

Executive editor: Elizabeth A. Jones
Developmental editor: Bradley Kosirog
Editorial assistant: Emily J. Gray
Marketing manager: John T. Wannemacher
Senior project manager: Beth Cigler
Production supervisor: Scott Hamilton
Senior designer: Crispin Prebys

Cover design: Z Graphics

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley & Sons Company

Library of Congress Cataloging-in-Publication Data

Kamin, Samuel N.
An introduction to computer science using Java / Samuel N. Kamin,
M. Dennis Mickunas, Edward M. Reingold.
p. cm.
Includes index.
ISBN 0-07-034224-5
1. Java (Computer program language) 2. Computer science.
I. Mickunas, M. Dennis. II. Reingold, Edward M., 1954-
III. Title.
QA76.73.J38K36 1998
005.13'3--dc21 97-36768

http://www.mhhe.com

An Introduction to Computer
Science Using Java

McGRAW-HILL SERIES IN COMPUTER SCIENCE

SENIOR CONSULTING EDITOR
C. L. Liu, University of Illinois at Urbana-Champaign

CONSULTING EDITOR
Allen B. Tucker, Bowdoin College

Fundamentals of Computing and Programming
Computer Organization and Architecture
Computers in Society/Ethics

Systems and Languages

Theoretical Foundatiops

Software Engineering and Datgbase

Artificial Intelligence

Networks, Parallel and Distributed Computing
Graphics and Visualization

The MIT Electrical and Computer Science Series

Dedicated, with love, to our mothers
Sylvia H. Klersfeld, mother of S.N.K.
Ruth D. Simon %”1, mother-in-law of S.N.K.

Norma D. Mickunas, mother of M.D.M.
Frieda G. Foster, mother-in-law of M.D.M.

Leah J. Reingold %1, mother of E.M.R.

Badonna L. Reingold, step-mother of E.M.R.
Charlotte B. Nothmann, mother-in-law of E.M.R.

ROTYUTIP RTIRT TPIW CHPD DR MR TART XY 9p ynw ma '3 mor a7

When Rabbi Yosef heard his mother’s footsteps he said, “Let me stand up,
for the Divine Presence is approaching.” Talmud, Kiddushin 31b

R R R

Read not to contradict and confute, nor to believe and
take for granted, nor to find talk and discourse, but to
weigh and consider.

—from Essays, 50. Of Studies,
Francis Bacon

his book is an introduction to the principles and techniques of computer
science, using the Java programming language as the medium of instruc-
tion.

Java, of course, is the language used in many World Wide Web browsers
to create “active” home pages. With it, almost unlimited effects can be realized.
The reader completing this book will be capable of creating web pages with very
complex behavior.

Let us be clear on one point, however: this book promises no “fabulous
applets in just five minutes a day.” Programming in Java, as in any programming
language, is challenging intellectual work. Our goals are those of any introductory
computer science book: to give the reader the tools to develop correct, efficient,
well-structured, and stylish programs and to build a foundation for further studies
in computer science (CS).

Why, then, use Java? There are excellent pedagogical and practical reasons
for using Java as an introductory programming language:

Java is clean. Java is an elegant object-oriented language, with run-time error
checking, built-in garbage collection, an exception-handling mechanism—
in short, many features ideally suited to introduce programming concepts
without the pitfalls of other languages.

Java is fun. Javaisequipped with a standard library of routines for creating graph-
ics, playing audio files, and so on. Although the process of programming
in Java is not essentially different from that of programming in any other

Preface

language, the results can be a lot more interesting. One easily can imagine
holding applet contests in freshman programming courses!

Java is available. We have done all our programming in Sun’s Java Development
Kit 1.1, which runs on all major platforms, with nearly flawless portability
among them, and it is free! Students can work on their own computers, and
instructors don’t have to worry about incompatibilities introduced by new
lab equipment. (See the “Web Pages™ section for Sun’s URL.)

Java compilers are user-friendly. Well, at least more user-friendly than many.
Above all, because Java is interpreted, run-time errors are announced not
with cryptic messages like “segmentation fault”—typical of C and C++
compilers—but instead with messages stating on what source line the error
occurred. (And, if anything, other Java processors are likely to be even
more friendly than the JDK.)

Java is simplified C++. In many CS curricula, upper-level courses are taught us-
ing C++, the most widely used “object-oriented”” language. However, in the
view of many instructors, C++ is too complex to be an appropriate introduc-
tory programming language. Java can provide a gentler introduction to the
major concepts and syntax of C++, after which a brief period of migration
to C++ will suffice.

The Structure of This Book

Our approach to presenting Java programming concepts represents a compromise
among competing requirements. “Object oriented” is a description not only of a
set of language features but of a programming philosophy, and it is important to
stress that philosophy from the start; on the other hand, a good deal of machinery
is needed before one can really do anything, object-orientedly or otherwise, and
philosophy without examples is empty. Arrays perhaps are the most important
“advanced” topic for many instructors, so it must be given due emphasis. Applets
are fun and can provide great motivation for students, but they require knowledge
of quite a lot of conceptually uninteresting detail; some instructors will prefer to
postpone them to late in the semester or to another course. These are a few of the
competing interests we have attempted to balance.

Concerning applets, we have chosen what we hope many will find to be an
agreeable approach. Although coverage of applets is included in every chapter,
it is separated from the coverage of nonapplets (“applications,” in Java parlance).
Chapter 3 is devoted exclusively to applets (plus a simple introduction to HTML).
After that, every chapter except the last covers applets in its final section and only
there. These applet sections do double duty, reinforcing the material covered in
the chapter and introducing new features of Java’s application programming in-
terface (API). The last chapter goes through the development of a single applet, a
Reversi-playing program. The basic programming concepts always are presented
in the context of (text-oriented) applications, so the instructor can ignore applets
entirely; aside from some applet-oriented exercises, which are clearly marked,

Preface

there is no mention of applets outside the applet sections. (Also, to ease the
development of simple applications, we have finessed Java’s arcane input mech-
anism by defining a Keyboard class for reading simple integers, decimals, and
strings.)

The coverage of programming concepts places a strong emphasis on object-
oriented programming. In Java, unlike C++, it is impossible to avoid it, even
temporarily. All code is contained in classes and many services can be obtained
only by “sending messages.” The concepts of object-oriented programming are
first introduced in Chapter 1. A general overview of Java—enough to write very
simple programs—is the topic of Chapter 2. Chapter 3, as mentioned already,
presents some simple HTML and enough of the Java API for students to write
simple applets of the “hello, world” variety; no new language features are covered
there.

Chapter 4 is a conventional treatment of conditionals. The applet section
expands on the treatment of events, providing the ability to respond to events such
as button clicks.

Chapter 5 introduces object-oriented programming in earnest, with detailed
treatment of methods and classes. We concentrate on instance methods here, as
these are more directly tied into the object-oriented approach than class methods
and the distinction can be difficult to understand.

Subsequent chapters cover iteration (Chapter 6), one-dimensional arrays
(Chapter 7), class variables and methods (Chapter 8), two-dimensional arrays
(Chapter 9), and strings and input/output (Chapter 10). The applet sections intro-
duce more event-processing methods, as well as simple animation and database
searching.

Chapter 11 covers recursion, including the presentation of quicksort, merge
sort, and in the applets section, “fractal’” curves (the Sierpiniski and Hilbert curves).
Chapter 12 presents some of the more advanced features of Java: exceptions,
inheritance, interfaces, and abstract classes—all are mentioned in earlier chapters
(in the applet sections they cannot be avoided) but this is their first full treatment.
In the end, nearly all the Java language is covered, together with the highlights
of the API. Chapter 13 shows the development of a large applet, pulling together
much of what has been covered in the book.

How to Use This Book

Most instructors will consider the nonapplet material in Chapters 1-9 to be fun-
damental. This material is presented in nearly traditional fashion but for the
predominance of object-oriented concepts, as described earlier. Chapters 10—
12 cover more advanced material, which many instructors may feel they can do
without; and the large example developed in Chapter 13 is decidedly optional.
Chapters 10-13 are entirely independent of one another and can be covered or
not, in any order.

The main decisions for the instructor are how to incorporate applets into his
or her course and how much of the advanced material to cover. The book allows

Preface

for a variety of approaches:

e Anintegrated applications and applets course will follow the book as writ-
ten, going as far as time and the instructor’s interests allow. The emphasis
on applets can be increased by assigning the applet-oriented exercises in
the nonapplet sections. Many instructors will want to conclude the course
with an applet contest, perhaps with students working in groups.

e An applications-only course will omit Chapters 3 and 12 and all of the
applet sections. As we said earlier, one can cover this material and remain
nearly unaware of the existence of applets. This approach has the advantage
that it permits the treatment of more programming concepts in the available
time, without the distraction of having to learn the details of Java’s APL

e A likely compromise is an applications followed by applets approach. The
instructor might cover the nonapplet material in, say, Chapters 1-8 (skipping
Chapter 3), then go back and pick up the applets material before continuing
with Chapter 9 and beyond. An advantage of this approach is that students
will have some programming experience before starting to program applets,
which will make it easier for them to absorb the API details and, perhaps,
save time in the long run.

Concerning the order of the chapters, the coverage is progressive, so that
Chapters 1, 2, 4, ..., 9 must be covered in order. Chapter 3 is necessary only
if applets are to be covered. Chapter 10, “Strings, Characters, and File I/O,”
does not depend on any material presented after Chapter 6 (although we would
recommend that Chapter 7 precede it), so some instructors will want to present
this material earlier. Chapters 11-13 depend on the material in Chapters 1-9, but
are completely independent of one another, so any or all of them can be covered
after Chapter 9.

Pedagogical Features

We have included in each chapter a number of features intended to enhance the
student’s understanding. Of course, numerous exercises from a wide variety of
fields are included. Each chapter includes a summary reiterating the major con-
cepts in that chapter and listing the new keywords and API methods introduced
there. Frequent “Bug Alert” boxes warn the reader of common mistakes and mis-
conceptions. Many early chapters contain a “debugging section,” in which we
follow the development of a program from initial specification, through syntax
errors and logic errors, to a complete solution. These sections allow us to present
debugging techniques, illustrate mistakes often made in using the features intro-
duced in that chapter, and perhaps most important, show the readers that they are
not alone in making mistakes—even stupid ones—when programming.

Some of the exercises (about a third of them) are labeled special in some
way. There are three types of labels. A hand (¥¥) indicates an exercise we
think every student should do; solutions to these exercises are provided at the
back of the book. (Solutions to the remaining exercises can be found in the
Solutions Manual, available to teachers from the publisher without cost.) A star

Preface

(%) indicates that an exercise is unusually difficult or extensive. A picture of a
mouse (C—) indicates that the exercise involves applets; we have been sure to
include an adequate number of nonapplet exercises in the application sections, so
that an instructor is not obliged to cover applets.

The outside margins contain keywords and phrases from the nearby text.
The outside margins are visible on both left- and right-hand pages as one flips
through the text, making it easy to locate a particular discussion.

The inside margins are used occasionally to display a “curvy road” sign.
Such a sign warns the reader that the nearby material is more subtle or difficult
than other material and deserves special attention. More than one curvy sign
warns that more care should be taken in reading the material. Naturally, we
have tried our best to smooth and widen all the roads, but some curvy ones are
unavoidable.

Which Version of Java?

The Java language is quite stable and has been for some time. However, the API,
especially the part relating to applets, changed quite significantly early in 1997. In
particular, the treatment of “events,” which are used in all but the very simplest ap-
plets, is quite different in JDK 1.1 from what it was in JDK 1.0. We have used JDK
1.1 exclusively and have made no attempt to accommodate both versions; anyone
wishing to use this book to learn to program applets must obtain JDK 1.1. As of
this writing (Fall 1997), the latter is available (see http://java.sun.com)
on all major platforms except MacOS, and should be available for Macs soon.

Errata

In the introduction to his Guide to the Perplexed, the great 12th-century philoso-
pher, physician, and rabbinic commentator Moses Maimonides outlines seven
categories of contradiction or error to be found in books:

e The author quotes various sources that disagree.

e The author has changed his mind on a point but neglects to remove all the
rejected material.

e Something is not to be taken literally but has inner content.

e An apparent (but not real) contradiction stems from the necessity to explain
one thing before another.

e A simplification is made for purposes of explanation but later the point is
explained in full.

e A contradiction escapes the author.

e The author is intentionally concealing something.

Maimonides avers that all the errors in his Guide to the Perplexed are of the fifth

and seventh types. Would that the present authors could make such a claim!
There undoubtedly are errors of substance, style, spelling, and grammar in

this book, try mightily as we did to prevent and eliminate them. All the programs

Preface

and segments of programs were compiled and thoroughly tested before inclusion
in the text.

If you should happen to notice an error, please bring it to our attention. We
can be reached at the e-mail addresses

kamin@cs.uiuc.edu
mickunas@cs.uiuc.edu
reingold@cs.uiuc.edu

Of course, we can be contacted by snail-mail at

Department of Computer Science

University of Illinois at Urbana—Champaign
1304 West Springfield Avenue

Urbana, IL 61801-2987

Web Pages
We have established a home page for this book on the World Wide Web:
http://www.mhhe.com/engcs/compsci/kamin

This home page gives easy access to the programs included in the book. All of
the major pieces of Java code in our presentation are available there; erroneous or
bad-example code is not available nor are some of the one- or two-line examples.
You also can view the applets that are presented in the book, as well as some
of those that are assigned as exercises (for which we don’t provide the source
on-line, naturally).

The examples are written using Sun Microsystem’s Java Development Kit,
although naturally only a very small part of the presentation depends on this. It is
important, though, that you have the correct version, which is JDK 1.1; the earlier
version, 1.0, was widely disseminated in web browsers and still exists. In fact,
the latest version of Netscape Navigator incorporates version 1.0, so that almost
none of our applet examples can be run in that browser; however, by the time
you read this, the newer Netscape Communicator, using JDK version 1.1, will be
available.

In any case, your best bet is to obtain an implementation of JDK 1.1 and
use the appletviewer program to develop applets. Using appletviewer
has the added advantage that you can write output to the standard output stream
(normally, the command window from which the appletviewer wasinvoked),
an invaluable aid in debugging. JDK 1.1 can be obtained from the web page

http://java.sun.com

Click on the “download” button. That page also contains links to other Java
implementations, including both alternative sources of implementations for the
major platforms and implementations for platforms not supported by Sun.

Preface

xiii

Acknowledgments

Our Sponsoring Editor during this project was Betsy Jones. Betsy, together with
our Developmental Editor, Brad Kosirog, diligently shepherded us through our
last year of effort. They were ably assisted by Emily Gray. Beth Cigler (Senior
Project Manager) efficiently handled copyediting, composition, and proofreading.

We prepared the original manuscript using ISTgX, drawing many of the
figures with the powerful pstricks macros written by Timothy Van Zandt of
Princeton University.

We were fortunate to get feedback from a number of highly qualified and
perceptive outside reviewers. Although we may not always have agreed with—
or even enjoyed seeing—their comments, we always found them thoughtful and
thought provoking. Many thanks to

Ann Ford, University of Michigan

Ephraim Glinert, Rensselaer Polytechnic Institute
Michael T. Goodrich, Johns Hopkins University
William Hankley, Kansas State University

Lily Hou, Carnegie Mellon University

Dale Johnson, Gadsen State Community College
Michael Johnson, Carnegie Mellon University
Brian Malloy, Clemson University

David Poplawski, Michigan Technological University
Brent Seales, University of Kentucky

Stephen Slade, Yale University

Don Smith, Rutgers University

Lou Steinberg, Rutgers University

David Teague, Western Carolina University
Dawn Wilkins, University of Mississippi

Finally, our wives and daughters bore the brunt of this effort as much as we
did ourselves. Our thanks and love, now and always, to them.

S.N.K.
M.D.M.
E.M.R.

Contents

List of Figures xxiii
List of Tables Xxvii
List of Bug Alerts XXixX

1 WHAT IS PROGRAMMING?

1.1 Mechanical Mouse in a Maze -+
Exercises—First Set 8
1.2 Computers and Programming Languages 8
1.3 Programs and Algorithms 9
1.4 Applications and Applets 10
1.5 Compilers and Interpreters 11
Exercises—Second Set 13
1.6 Object-Oriented Programming: Mouse in a Maze Revisited 14
1.6.1 An Infestation of Mice—Abstraction 15
1.6.2 Why Object-Oriented Programming? 17
Summary 17
2 BASIC ELEMENTS OF JAVA
2.1 Two Simple Programs 19
2.2 Simple Input and Output 22

XV

xvi

CONTENTS

Exercises—First Set 23
2.3 Variables and Assignment Statements 24
2.4 Data Types and Expressions 26
2.5 Classes, Methods, and Objects 31
2.5.1 The String Class 33
2.5.2 Class Methods and Variables 34
2.5.3 Review of Dot Notation 35
2.5.4 Prototypes 35
2.6 Statements 36
2.7 Program Layout 37
2.8 Debugging 39
Exercises—Second Set 48
Summary 49
3 APPLETS
3.1 HTML 53
3.2 Applets and the Applet Tag 58
3.3 The “Hello!” Applet 60
3.4 The Java API 61
3.5 Running Applets Using the appletviewer 63
3.6 The Temperature Applet 65
3.7 Drawing in Applets 68
3.8 Components 74
3.8.1 Size 74
3.8.2 Color 75
Exercises—First Set 76
Summary 77
4 DECISION MAKING
4.1 The if Statement 81
4.2 Constructing and Analyzing Boolean Expressions 86
Exercises—First Set 92
43 switch Statements 96
4.4 Debugging Decision Making 100
Exercises—Second Set 105
4.5 Using Conditionals in Applets 107
4.5.1 More Components 110
Exercises—Third Set 114
Summary 114

CONTENTS

5 CLASSES AND METHODS I

5.1 Object-Oriented Programming 119
5.2 Methods 120
5.3 The Time Class 122
5.3.1 Time’s Clients 123
5.3.2 The Time Class 128
Exercises—First Set 131
5.4 More Time Methods 133
Exercises—Second Set 137
5.5 Instance Methods 139
5.6 Changing Member Values—Mutability 147
5.7 Example: A Tic-Tac-Toe Board 151
5.7.1 Representation Independence 157
Exercises—Third Set 158
5.8 Debugging Classes 160
5.9 Objects in Applets 166
5.9.1 Events 171
Exercises—Fourth Set 173
Summary 174
6 ITERATION
6.1 while Loops 177
6.1.1 Simple Loops 180
6.2 For Loops 181
6.3 do-while Loops 182
Exercises—First Set 183
6.4 Reading Input in a Loop 185
6.5 The break Statement in Loops 190
6.6 Debugging Loops 190
Exercises—Second Set 197
6.7 TIteration in Applets 199
Exercises—Third Set 204
Summary 204
7 ONE-DIMENSIONAL ARRAYS
7.1 Array Basics 207
7.2 Simple Array-Processing Loops 210

Exercises—First Set

216

CONTENTS

7.3 Debugging Arrays 220
7.4 Sorting and Searching 228
Exercises—Second Set 234
7.5 One-Dimensional Arrays in Applets 235
Exercises—Third Set 237
Summary 238

8 CLASSES AND METHODS II

8.1 Class Variables and Class Methods 241
Exercises—First Set 244
8.2 Classes with No Instance Variables or Methods 245
8.3 Overloading Methods 246
Exercises—Second Set 247
8.4 Modular Development and Debugging 248
8.4.1 The Date Class 249
Exercises—Third Set 257
8.5 Using Static Methods in Applets 258
8.5.1 Designing the Screen Layout 259
8.5.2 A Calendar Applet 265
Exercises—Fourth Set 272
Summary 272

9 NESTED LOOPS
AND TWO-DIMENSIONAL ARRAYS

9.1 Nested Loops 275
Exercises—First Set 279
9.2 Two-Dimensional Arrays 281
9.2.1 Two-Dimensional Array Basics 281
9.2.2 Initializing Two-Dimensional Arrays 285
9.2.3 Two-Dimensional Arrays Are Arrays of Arrays 286
Exercises—Second Set 287
9.3 Drawing Pictures 290
Exercises—Third Set 302
9.4 Mouse in a Maze Revisited 304
9.5 Two-Dimensional Arrays in Applets 308
9.5.1 Mouse in a Maze, with Graphics 309
9.5.2 A Graphical Version of Sof tFrame 311

Summary 313

