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Overview
Part A
Unit 1

Multiple-Variable Models develops student ability
to construct and reason with linked quantitative
variables and relations involving several variables
and several constraints.

Topics include formulas relating several variables
by a single equation, systems of equations with
several dependent variables or constraints, patterns
of change in one or more variables in response to
changes in others, solution of systems of equations
and inequalities, and linear programming.

lesson 1 Linked Variables

lesson 2 Algebra, Geometry, and Trigonometry
Lesson 3 Linked Equations

lessond4 Linear Programming

Lesson b Looking Back

|

Unit3

Symbol Sense and
Reasoning

-

Symbol Sense and Algebraic Reasoning develops
student ability to represent and draw inferences
about algebraic relations and functions using
symbolic expressions and manipulations.

Topics include use of polynomial, exponential,
and rational expressions to model relations among
quantitative variables, field properties of real num-
bers and their application to expression of algebraic
relations in equivalent forms and to solution of
equations and inequalities by methods including
factoring and the quadratic formula.

Lesson 1 A/ce/
Lesson2 A/ge (
Lesson 3 Algebraic Operc
lesson4 Reasoning to Solve |
Inequalities
Llesson b Proof througl
Lesson6 /.00l mng Back

7
ons ana

1 Algebraic Keasoning

viii
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Unit 2 Viodeling

Modeling Public Opinion develops student under-
standing of how public opinion can be measured.
The situations analyzed include elections (where
there are more than two choices) and sample
surveys, including political polling.

Topics include preferential voting, election
analysis methods, Arrow’s theorem, fairness in
social decision making, surveys, sampling, sam-
pling distributions, relationship between a sample
and a population, confidence intervals, margin of
error, and critical analysis of elections and surveys.

Lesson 1 Voring

Lesson 2

Lesson 3 5 o m Populati

lesssnd Confidence Intervals: From Sample
opulati

Lessonb /.ookin

Reasonina

Shapes and Geometric Reasoning introduces
students to formal reasoning and deduction in
geometric settings.

Topics include inductive and deductive reasoning,
counterexamples, the role of assumptions in proof,
conclusions concerning supplementary and vertical
angles and the angles formed by parallel lines and
transversals, conditions insuring similarity and con-
gruence of triangles and their application to quadri-
laterals and other shapes, and necessary and suffi-
cient conditions for parallelograms.

Lesson 1 L
Lesson 2 il 4 Conefitéri
Lesson 3 ry and Sufficie

Lesson 4 )



Overview of Course 3
Part B

UnitD

Patterns in Variation extends student understanding
of the measurement of variation, develops student
ability to use the normal distribution as a model of
variation, and introduces students to the probability
and statistical inference involved in the control
charts used in industry for statistical process control.
Topics include standard deviation and its properties,
normal distribution and its relation to standard
deviation, statistical process control, control charts,
control limits, mutually exclusive events, and the
Addition Rule of Probability.

Patterns in Variation

Lesson 1 Measuring Variation with the Standard
Deviation

Lesson2 7he Normal Distribution

Llesson 3 Statistical Process Control

lesson4 /.ooking Back

Unit 7

Discrete Models of Change extends student ability
to represent, analyze, and solve problems in situa-
tions involving sequential and recursive change.
Topics include iteration and recursion as tools to
model and analyze sequential change in real-world
contexts; arithmetic, geometric, and other
sequences; arithmetic and geometric series; finite
differences; linear and nonlinear recurrence rela-
tions; and function iteration, including graphical
iteration and fixed points.

Discrete Models of Change

lesson1 Modeling Sequential Change Using
Recursion

lesssn2 A Discrete View of Linear, Exponential,
and Polynomial Models

lesson 3 [Iterating Functions

lessond /ooking Back

Unit 6

Families of Functions reviews and extends stu-
dent ability to recognize different function patterns
in numerical and graphical data and to interpret
and construct appropriate symbolic representations
modeling those data patterns.

Topics include review of linear, polynomial,
exponential, rational, and periodic functions
(including effects of parameters on numeric and
graphic patterns) and construction of function
rules for function tables and graphs that are trans-
formations of basic types (translation, reflection,
stretch).

Families of Functions

Lesson 1 Function Models Revisited

lesson2 Customizing Models 1: Reflections and
Vertical Transformations

lesson3 Customizing Models 2: Horizontal
Transformations

Lesson4 7ooking Back

Capstone Looking Back at Course 3

Making the Best of It: Optimal Forms and
Strategies is a thematic, two-week project-oriented
activity that enables students to pull together and
apply the important mathematical concepts and
methods developed throughout the course.

ix



Preface

The first three courses in the Contemporary Mathematics
in Context series provide a common core of broadly use-
ful mathematics for all students. They were developed to
prepare students for success in college, in careers, and in
daily life in contemporary society. The series builds upon
the theme of mathematics as sense-making. Through
investigations of real-life contexts, students develop a rich
understanding of important mathematics that makes sense
to them and which, in turn, enables them to make sense out
of new situations and problems.

Each course in the Contemporary Mathematics in
Context curriculum shares the following mathematical and
instructional features.

® Multiple Connected Strands Each year the curricu-
lum features four strands of mathematics, unified by
fundamental themes, by common topics, and by
habits of mind or ways of thinking. Developing math-
ematics each year along multiple strands helps
students develop diverse mathematical insights and
nurtures their differing strengths and talents.

¥ Mathematical Modeling The curriculum emphasizes
mathematical modeling and modeling concepts includ-
ing data collection, representation, interpretation,
prediction, and simulation. The modeling perspective
permits students to experience mathematics as a means
of making sense of data and problems that arise in
diverse contexts within and across cultures.

¥ Access The curriculum is designed so that core
topics are accessible to a wide range of students.

xii

Differences in student performance and interest can
be accommodated by the depth and level of abstrac-
tion to which common topics are pursued, by the
nature and degree of difficulty of applications, and by
providing opportunities for student choice on home-
work tasks and projects.

® Technology Numerical, graphics, and programming
and link capabilities such as those found on many
graphics calculators are assumed and capitalized on.
This use of technology permits the curriculum and
instruction to emphasize multiple representations
(numerical, graphical, and symbolic) and to focus on
goals in which mathematical thinking and problem
solving are central.

B Active Learning Instruction and assessment practices
are designed to promote mathematical thinking
through the use of engaging problem situations. Both
collaborative groups and individual work are used as
students explore, conjecture, verify, apply, evaluate,
and communicate mathematical ideas.

Unified Mathematics

Each course of Contemporary Mathematics in Context fea-
tures important mathematics drawn from four “strands.”
The Algebra and Functions strand develops student abil-
ity to recognize, represent, and solve problems involving
relations among quantitative variables. Central to the
development is the use of functions as mathematical mod-
els. The key algebraic models in the curriculum are linear,



exponential, power, and periodic functions, as well as com-
binations of these various types. Attention is also given to
modeling with systems of equations, both linear and non-
linear, and to symbolic reasoning.

The primary goal of the Geometry and Trigonometry
strand is to develop visual thinking and ability to con-
struct, reason with, interpret, and apply mathematical
models of patterns in visual and physical contexts.
Specific activities include describing patterns with
regard to shape, size, and location; representing patterns
with drawings or coordinates; predicting changes and
invariants in shapes and patterns; and organizing geo-
metric facts and relationships through deductive reason-
ing.

The primary role of the Statistics and Probability
strand is to develop student ability to analyze data intel-
ligently, to recognize and measure variation, and to
understand the patterns that underlie probabilistic situa-
tions. Graphical methods of data analysis, simulations,
sampling, and experience with the collection and inter-
pretation of real data are featured.

The Discrete Mathematics strand develops student
ability to model and solve problems involving sequential
change, decision-making in finite settings, and relation-
ships among a finite number of elements. Topics include
matrices, vertex-edge graphs, recursion, voting methods,
and systematic counting methods (combinatorics). Key
themes are existence (Is there a solution?), optimization
(What is the best solution?), and algorithmic problem-
solving (Can you efficiently construct a solution?).

These four strands are connected within units by fun-
damental ideas such as symmetry, matrices, recursion,
functions, data analysis and curve-fitting. The strands
also are connected across units by mathematical habits of
mind such as visual thinking, recursive thinking, search-
ing for and describing patterns, making and checking
conjectures, reasoning with multiple representations,
inventing mathematics, and providing convincing argu-
ments. The strands are unified further by the fundamen-
tal themes of data, representation, shape, and change.
Important mathematical ideas are continually revisited
through this attention to connections within and across
strands, enabling students to develop a robust under-
standing of mathematics.

Active Learning and Teaching

The manner in which mathematical ideas are developed
can be as important as the mathematics to which students
are introduced. Contemporary Mathematics in Context
features multi-day lessons centered on big ideas.
Lessons are organized around a four-phase cycle of
classroom activities, described below, designed to
engage students in investigating and making sense of
problem situations, in constructing important mathemat-
ical concepts and methods, and in communicating orally
and in writing their thinking and the results of their
efforts. Most classroom activities are designed to be
completed by students working together collaboratively
in heterogeneous groupings of two to four students.

The launch phase promotes class discussion of a situ-
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ation and of related questions to think about, setting the
context for the student work to follow. In the second or
explore phase, students investigate more focused prob-
lems and questions related to the launch situation. This
investigative work is followed by a class discussion in
which students summarize mathematical ideas developed
in their groups, providing an opportunity to construct a
shared understanding of important concepts, methods,
and approaches. Finally, students are given a task to
complete on their own, assessing their initial understand-
ing of the concepts and methods.

Each lesson also includes tasks to engage students in
Modeling with, Organizing, Reflecting on, and
Extending their mathematical understanding. These
MORE tasks are central to the learning goals of each les-
son and are intended primarily as individual work out-
side of class. Selection of tasks for use with a class
should be based on student performance and the avail-
ability of time and technology. Students can exercise
some choice of tasks to pursue, and at times they can be
given the opportunity to pose their own problems and
questions to investigate.

Xiv

Multiple Approaches to Assessment

Assessing what students know and are able to do is an
integral part of Contemporary Mathematics in Context.
Initially, as students pursue the investigations that make
up the curriculum, the teacher is able to informally assess
student performance in terms of process, content, dispo-
sition, or other factors. At the end of each investigation,
the “Checkpoint” and accompanying class discussion
provide an opportunity for the teacher to assess the lev-
els of understanding that the various groups of students
have reached. Finally, the “On Your Own’ problem sit-
uation, as well as the tasks in the MORE sets, provides
further opportunities to assess the level of understanding
of each individual student. Quizzes, in-class exams,
take-home assessment activities, and extended projects
are included in the teacher resource materials.
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To the Student

Contemporary Mathematics in Context, Course 3 builds
on the mathematical concepts, methods, and habits of
mind developed in Courses | and 2. With this text, you
will continue to learn mathematics by doing mathemat-
ics, not by studying “worked out™ examples. You will
investigate important mathematical ideas and ways of
thinking as you try to understand and make sense of real-
istic situations. Because real-world situations and prob-
lems often involve data, shape, change, or chance, you
will learn fundamental concepts and methods from sev-
eral strands of mathematics. In particular, you will
develop an understanding of broadly useful ideas from
algebra and functions, from statistics and probability,
from geometry and trigonometry, and from discrete
mathematics. You also will see connections among these
strands—how they weave together to form the fabric of
mathematics.

Because real-world situations and problems are often
open-ended, you will find that there may be more than one
correct approach and more than one correct solution.
Therefore, you will frequently be asked to explain your
ideas. You also will increasingly be asked to provide more
general arguments or proofs for mathematical statements.

This text will provide you with help and practice in rea-
soning and communicating clearly about mathematics.

Because the solution of real-world problems often
involves teamwork, you will continue to often work col-
laboratively with a partner or in small groups as you
investigate realistic and interesting situations. As in
Courses 1 and 2, you will find that 2 or 4 students work-
ing collaboratively on a problem can often accomplish
more than any one of you would working individually.
Because technology is commonly used in solving real-
world problems, you will continue to use a graphing cal-
culator or computer as a tool to help you understand and
make sense of situations and problems you encounter.

As in Courses | and 2, you're going to learn a lot of
useful mathematics—and it’s going to make sense to you.
You're going to strengthen your skills in working cooper-
atively and communicating with others as well. You're
also going to strengthen your skills in using technology
tools intelligently and effectively. You’ll have plenty of
opportunities to be creative, too, so let your imagination
lead you and enjoy.
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UNIT

Linked Variables

Karate is a very impressive form of
the martial arts. You may have seen
live or video exhibitions of highly
trained men and women breaking
bricks and boards with chops from
their hands, feet, or even heads. Some
of you may have even attempted a
karate chop and discovered that, with-
out proper technique and training, it
can hurt.

Karate chops break bricks and boards by applying carefully aimed bursts of
energy. Different targets require different amounts of energy. Think about
the four target boards pictured here:

1 2 3 4

Which board do you think would require the greatest energy to break?

The target boards differ in length and thickness. How would you expect
those two variables to affect required breaking energy?

Breaking energy E depends on board length L and thickness 7. What
sort of equation might be used to express E as a function of L and 7?7

@ 0 60

What other variables would you consider in judging the energy
required to break a board? How would you expect those variables to be
related to each other and to E, L, and 7?7

MULTIPLE-VARIABLE MODELS



