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Preface

The subject commonly. called “Advanced Calculus” means different things to different
people. To some it essentially represents elementary calculus from an advanced viewpoint, ie.
with rigorous statements and proofs of theorems. To others it represents a variety of special
advanced topics which are considered important but which cannot be covered in an elementary
course.

In this book an effort has been made to adopt a reasonable compromise between these
extreme approaches which, it is believed, will serve a variety of individuals. The early chapters
of the book serve in general to review and extend fundamental concepts already presented in
elementary calculus. This should be valuable to those who have forgotten some of the calculus
studied previously and who need “a bit of refreshing”. It may also serve to provide a common
background for students who have been given different types of courses in elementary calculus.
Later chapters serve to present special advanced topics which are fundamental to the scientist,
engineer and mathematician if he is to become proficient in his intended field.

This book has been designed for use either as a supplement to all current standard text-
books or as a textbook for a formal course in advanced calculus. It should also prove useful
to students taking courses in physics, engineering or any of the numerous other fields in which
advanced mathematical methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and theorems
together with illustrative and other descriptive material. This is followed by graded sets of solved
and supplementary problems. The solved problems serve to illustrate and amplify the theory,
bring into sharp focus those fine points without which the student continually feels himself on
unsafe ground, and provide the repetition of basic principles so vital to effective learning.
Numerous proofs of theorems and derivations of basic results are included among the solved
problems. The large number of supplementary problems with answers serve as a complete
review of the material of each chapter.

Topics covered include the differential and integral calculus of functions of one or more
variables and their applications. Vector methods, which lend themselves so readily to concise
notation and to geometric and physical interpretations, are introduced early and used whenever
they can contribute to motivation and understanding. Special topics include line and surface
integrals and integral theorems, infinite series, improper integrals, gamma and beta functions,
and Fourier series. Added features are the chapters on Fourier integrals, elliptic integrals and
functions of a complex variable which should prove extremely useful in the study of advanced
engineering, physics and mathematics.

Considerably more material has been included here than can be covered in most courses.
This has been done to make the book more flexible, to provide a more useful book of reference
and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company for
their splendid cooperation in meeting the seemingly endless attempts at perfection by the author.
M. R. SPIEGEL

Rensselaer Polytechnic Institute
December, 1962
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Chapter 1

Numbers

SETS

Fundamental in mathematics is the concept of a set, class or collection of objects
having specified characteristics. For example we speak of the set of all university pro-
fessors, the set of all letters A,B,C, D, ...,Z of the English alphabet, etc. The individual
objects of the set are called members or elements. Any part of a set is called a subset of
the given set, e.g. A,B,C is a subset of A,B,C,D, ...,Z. The set consisting of no elements
is called the empty set or null set.

REAL NUMBERS
The following types of numbers are already familiar to the student.

1. Natural numbers 1,2,3,4, ..., also called positive integers, are used in counting
members of a set. The symbols varied with the times, e.g. the Romans used
IILIII,IV, .... The sum a+b and product a+b or ab of any two natural num-
bers a and b is also a natural number. This is often expressed by saying that
the set of natural numbers is closed under the operations of addition and multipli-
cation, or satisfies the closure property with respect to these operations.

2. Negative integers and zero denoted by —1,—2,—3,... and 0 respectively, arose
to permit solutions of equations such as +b = a where a and b are any natural
numbers. This leads to the operation of subtraction, or inverse of addition, and
we write * = a—D.

The set of positive and negative integers and zero is called the set of integers.

3. Rational numbers or fractions such as %, —%, ... arose to permit solutions of

equations such as bx =a for all integers a and b where b+0. This leads to the
operation of division, or inverse of multiplication, and we write xt=a/b or a-=+b
where a is the numerator and b the denominator.

The set of integers is a subset of the rational numbers, since integers cor-
respond to rational numbers where b=1.

4. Irrational numbers such as \/§ and = are numbers which are not rational, i.e.
cannot be expressed as % (called the quotient of a and b) where a and b are integers
and b=0.

The set of rational and irrational numbers is called the set of real numbers.

DECIMAL REPRESENTATION of REAL NUMBERS

Any real number can be expressed in decimal form, e.g. 17/10=1.7, 9/100=0.09,
1/6 =0.16666. ... In the case of a rational number the decimal expansion either terminates
or, if it does not terminate, one or a group of digits in the expansion will ultimately
repeat as, for example, in 1 = 0.142857142857142.... In the case of an irrational num-
ber such as \/2=1.41423... or »=23.14159... no such repetition can occur. We can
always consider a decimal expansion as unending, e.g. 1.375 is the same as 1.37500000. ..

or 1.3749999.... To indicate regl}l.'ring decimals we sometimes place dots over the re-
peating cycle of digits, e.g. 1 = 0.142857, ¥ = 3.16.
The decimal system uses the ten digits 0,1,2,...,9. It is possible to design number

systems with fewer or more digits, e.g. the binary system uses only two digits 0 and 1
(see Problems 32 and 33).
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GEOMETRIC REPRESENTATION of REAL NUMBERS

The geometric representation of real numbers as points on a line called the real axis,
as in the figure below, is also well known to the student. For each real number there
corresponds one and only one point on the line and conversely, i.e. there is a one to one
(1-1) correspondence between the set of real numbers and the set of points on the line.
Because of this we often use point and number interchangeably.

_ 4

F\ h\ /%/“/5/8/”
: : ; +——t . } t t
-4 -3 =2 =4 0 1 2: 3 4

Fig. 1-1

The set of real numbers to the right of 0 is called the set of positive numbers; the
set to the left of 0 is the set of negative numbers, while 0 itself is neither positive nor
negative.

Between any two rational numbers (or irrational numbers) on the line there are
infinitely many rational (and irrational) numbers. This leads us to call the set of rational
(or irrational) numbers an everywhere dense set.

4+

OPERATIONS with REAL NUMBERS
If a,b,c belong to the set R of real numbers, then:

1. a+b and ab belong to R Closure law

2.a+b =b+a Commutative law of addition
B.a+(b+c¢) = (a+b)+c Associative law of addition

4. ab = ba Commutative law of multiplication
5. a(bc) = (ab)c Associative law of multiplication
6. d(b+c) = ab+ac Distributive law
7.a4+0=0+a =a, 1a=a*1=a

0 is called the identity with respect to addition, 1 is called the identity with
respect to multiplication.
8. For any a there is a number x in R such that z +a = 0.
2 is called the inverse of a with respect to addition and is denoted by —a.
9. For any a # 0 there is a number z in R such that ax = 1.
x is called the inverse of a with respect to multiplication and is denoted by
a~! or 1/a.

These enable us to operate according to the usual rules of algebra. In general any
set, such as R, whose members satisfy the above is called a field.

INEQUALITIES

Ifa — b is a nonnegative number we say that a is greater than or equal to b or b is less than
orequal to a, and write respectivelya = b or b = a. If there is no possibility thata = b, we write
a>borb <a. Geometrically,a > b if the point on the real axis corresponding to a lies to the
right of the point corresponding to b.

Examples: 3<5 or 56>3; —2<—1 or —1> —2; x =3 means that z is a real number which may
be 3 or less than 3.
If a, b and ¢ are any given real numbers, then:

Either a>b,a=b or a<b Law of trichotomy

Ifa>band b > ¢, thena>c¢ Law of transitivity

Ifa>b,then a+¢c>b+ec

If a>b and ¢> 0, then ac > be

If a>b and ¢ <0, then ac < be

SR L B
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ABSOLUTE VALUE of REAL NUMBERS
The absolute value of a real number a, denoted by |a|, is defined as a if a>0, —a if
a<0, and 0 if a=0.
Examples: |5/ =5, |+2| =2, |~3| =3, |-V2|=V2, 0| =o0.

|

1. |ab| = |a||D] or |abe...m| = |a||bllc| ... |m|

2. la+b| = |a]+b] or Ja+tb+c+...+m| = |a|+|b+|c|]+ ...+ |m|

3. la—0b| = |a| — |b]

The distance between any two points (real numbers) ¢ and b on the real axis is
la —b| = |b—a|.

EXPONENTS and ROOTS

The product a-a...a of a real number a by itself p times is denoted by a®? where p
is called the exponent and a is called the base. The following rules hold.

1. aP+aq? = qrt¢ 3. (a”)’ = qPFr

D
a? _ a a?
2. Eq" = gr9 4. <5> = 'b—p

These and extensions to any real numbers are possible so long as division by zero is ex-
cluded. In particular by using 2, with p=¢q and p =0 respectively, we are led to the
definitions a®=1, a~2=1/a“

If a» =N, where p is a positive integer, we call a a pth root of N, written \p/ﬁ . There
may be more than one real pth root of N. For example since 22=4 and (—2)>=4, there
are two real square roots of 4, namely 2 and —2. It is customary to denote the positive
square root by \/122 and the negative one by -~\/i:—2.

oy . q
If p and q are positive integers, we define a*/ = /a®.

LOGARITHMS
If a» =N, p is called the logarithm of N to the base a, written »p = log,N. If ¢ and N
are positive and a1, there is only one real value for p. The following rules hold.

1. loga MN = logaM + logs N 2. logﬂ% = loge M — loga N
3. logaM™ = rlogs M

In practice two bases are used, the Briggsian system uses base a =10, the Napierian sys-
tem uses the natural base a =e=2.7T1828. . ..

AXIOMATIC FOUNDATIONS of the REAL NUMBER SYSTEM

The number system can be built up logically, starting from a basic set of axioms or
“self evident” truths, usually taken from experience, such as statements 1-9, Page 2.

If we assume as given the natural numbers and the operations of addition and multi-
plication (although it is possible to start even further back with the concept of sets), we
find that statements 1-6, Page 2, with R as the set of natural numbers, hold while 7-9
do not hold.

Taking 7 and 8 as additional requirements, we introduce the numbers —1,—-2, -3, ...
and 0. Then by taking 9 we introduce the rational numbers.
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Operations with these newly obtained numbers can be defined by adopting axioms 1-6,
where R is now the set of integers. These lead to proofs of statements such as (—2)(—3) =6,
—(—4) =4, (0)(5) =0, etc., which are usually taken for granted in elementary mathematics.

We can also introduce the concept of order or inequality for integers, and from these
inequalities for rational numbers. For example if a, b, ¢,d are positive integers we define
a/b > c/d if and only if ad > be¢, with similar extensions to negative integers.

Once we have the set of rational numbers and the rules of inequality concerning
them, we can order them geometrically as points on the real axis, as already indicated.
We can then show that there are points on the line which do not represent rational num-
bers (such as /2, ete.). These irrational numbers can be defined in various ways one
of which uses the idea of Dedekind cuts (see Problem 34). From this we can show that
the usual rules of algebra apply to irrational numbers and that no further real numbers
are possible.

POINT SETS, INTERVALS
A set of points (real numbers) located on the real axis is called a one-dimensional
point set.

The set of points z such that e =x =0 is called a closed interval and is denoted by
[a,b]. The set a <a <D is called an open interval, denoted by (@,b). The sets a<x =D
and a=.<b, denoted by (a,b] and |a, D) respectively, are called half open or half closed
intervals.

The symbol &, which can represent any number or point of a set, is called a variable.
The given numbers a or b are called constants.

Example: The set of all x such that |x| <4, ie. —4 <x <4, is represented by (—4,4), an open
interval.

The set @ > a can also be represented by a <x <. Such a set is called an infinite
or unbounded interval. Similarly —o < a2 < = represents all real numbers .

COUNTABILITY

A set is called countable or denumeradble if its elements can be placed in 1-1 cor-
respondence with the natural numbers.

Example: The even natural numbers 2,4,6,8, ... is a countable set because of the 1-1 correspond-
ence shown.

Given set

WS
<> 00

DO &> W

2
!
Natural numbers 1

A set is infinite if it can be placed in 1-1 correspondence with a subset of itself. An
infinite set which is countable is called countably infinite.

The set of rational numbers is countably infinite while the set of irrational numbers
or all real numbers is non-countably infinite (see Problems 17-20).

The number of elements in a set is called its cardinal number. A set which is
countably infinite is assigned the cardinal number X, (the Hebrew letter aleph-null). The
set of real numbers (or any sets which can be placed into 1-1 correspondence with this set)
is given the cardinal number C, called the cardinality of the continuum.
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NEIGHBORHOODS

The set of all points @ such that |z —a| <8 where §>0, is called a § neighborhood
of the point a. The set of all points z such that 0 <|r —a| < § in which x=a is excluded,
is called a deleted § neighborhood of a.

LIMIT POINTS

A limit point, point of accumulation or cluster point of a set of numbers is a number !
such that every deleted § neighborhood of I contains members of the set. In other words
for any § > 0, however small, we can always find a member x of the set which is not equal
to I but which is such that |x—1| <8. By considering smaller and smaller values of §
we see that there must be infinitely many such values of z.

A finite set cannot have a limit point. An infinite set may or may not have a limit
point. Thus the natural numbers have no limit point while the set of rational numbers
has infinitely many limit points.

A set containing all its limit points is called a closed set. The set of rational numbers
is not a closed set since, for example, the limit point /2 is not a member of the set
(Problem 5). However, the set 0=x=1 is a closed set.

BOUNDS

If for all numbers x of a set there is a number M such that x = M, the set is bounded
above and M is called an upper bound. Similarly if x =m, the set is bounded below and
m is called a lower bound. If for all x we have m =x =M, the set is called bounded.

If M is a number such that no member of the set is greater than M but there is at
least one member which exceeds M —e for every «¢>0, then M is called the least upper
bound (Lu.b.) of the set. Similarly if no member of the set is smaller than m but at least
one member is smaller than m +¢ for every ¢>0, then m is called the greatest lower
bound (g.l.b.) of the set.

WEIERSTRASS-BOLZANO THEOREM

The Weierstrass-Bolzano theorem states that every bounded infinite set has at least
one limit point. A proof of this is given in Problem 23, Chapter 3.

ALGEBRAIC and TRANSCENDENTAL NUMBERS
A number x which is a solution to the polynomial equation

QG + Gmx" ' + @r"r + .+ -1 + e = 0 (1)

where a0 = 0, ai,as, ...,a, are integers and n is a positive integer, called the degree of
the equation, is called an algebraic number. A number which cannot be expressed as a
solution of any polynomial equation with integer coefficients is called a transcendental
number,

Examples: 3 and V2 which are solutions of 3z —2 = 0 and a?—2 = 0 respectively, are algebraic

numbers.
The numbers = and e can be shown to be transcendental numbers. We still cannot
determine whether some numbers such as er or e + = are algebraic or not.
The set of algebraic numbers is a countably infinite set (see Problem 23) but the set
of transcendental numbers is non-countably infinite.
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The COMPLEX NUMBER SYSTEM

Since there is no real number x which satisfies the polynomial equation x*+1 =20
or similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a -+ bi where a and b are
real numbers called the real and imaginary parts, and i =1/—1 is called the imaginary
unit. Two complex numbers a + bi and ¢ + di are equal if and only if a=¢ and b=d. We
can consider real numbers as a subset of the set of complex numbers with b =0. The
complex number 0+ 07 corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as |a +bi] = Va®>+ 0% The complex
conjugate of a+ bi is defined as a — bi. The complex conjugate of the complex number z
is often indicated by Z or z*.

The set of complex numbers obeys rules 1-9 of Page 2, and thus constitutes a field.
In performing operations with complex numbers we can operate as in the algebra of real
numbers, replacing #* by —1 when it occurs. Inequalities for complex numbers are not
defined.

From the point of view of an axiomatic foundation of complex numbers, it is desirable
to treat a complex number as an ordered pair (a,b) of real numbers a and b subject to
certain operational rules which turn out to be equivalent to those above. For example, we
define (a,b) + (¢,d) = (a+¢, b+d), (a,b)(c,d) = (ac—0bd, ad+bc), m(a,b) = (ma,nd),
etc. We then find that (a,0) = a(1,0) + b(0,1) and we associate this with a+ bi,
where ¢ is the symbol for (0,1).

POLAR FORM of COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X’OX and Y'OY (the z
and y axes) as in Fig. 1-2 below, we can locate any point in the plane determined by these
lines by the ordered pair of numbers (2, y) called rectangular coordinates of the point. Ex-
amples of the location of such points are indicated by P,Q,R,S and T in Fig. 1-2.

Y Y
*L., .
P(3,4)
- J— 3
Q(—3,3) P(x,y)
+2
Ly ’ y
T(2.5,0) P
X 4y 3 S5 510 1 2 3 4 X X' 0 % X
+-1
R(~2.5,—1.5) 1. .
? S(2,-2)
+ -3
Y’ v
Fig. 1-2 Fig. 1-3

Since a complex number x + iy can be considered as an ordered pair (z,y), we can
represent such numbers by points in an a2y plane called the complex plane or Argand
diagram. Referring to Fig. 1-3 above we see that @ = pcos¢, ¥ = psing where
p = Var+y? = |z+1iy| and ¢, called the amplitude or argument, is the angle which line
OP makes with the positive x axis OX. It follows that

2 = v+ 1 = plcos¢ + ising) (2)

called the polar form of the complex number, where p and ¢ are called polar coordinates.
It is sometimes convenient to write cis ¢ instead of cos ¢ + 7 sin ¢.
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If 20 = @&+iy = plcos¢, +ising,) and 22 = 2412 = pycose, +ising,)
we can show that
2122 = P1P2 { Cos (‘i’] + ¢’3) + i sin (¢'1 + ¢’2) } (3)
z P e
o = —{cos(¢,—¢,) + isin(p,—¢,)) (4)
2 P2
2" = {p(cos¢ + tsing)}® = pr(cosné + isinng) (5)

where n is any real number. Equation (5) is sometimes called De Moivre’s theorem. We
can use this to determine roots of complex numbers. For example if n is a positive integer,

2Un = {p(cos¢ + ¢sing)}/n (6)

= P]/W{COS<%%> + ¢ sin <¢’ +n2kﬂ'>} k:(); 1, 2: 3; coon—1

from which it follows that there are in general n different values for z'/». Later (Chap. 11)
we will show that e® = cos¢ +ising where e =271828.... This is called Euler’s

formula.

MATHEMATICAL INDUCTION

The principle of mathematical induction is an important property of the positive
integers. It is especially useful in proving statements involving all positive integers when
it is known for example that the statements are valid for »=1,2,3 but it is suspected or
conjectured that they hold for all positive integers. The method of proof consists of the
following steps.

1. Prove the statement for n =1 (or some other positive integer).
2. Assume the statement true for n =k where & is any positive integer.

3. From the assumption in 2 prove that the statement must be true for n = k+1.
This is the part of the proof establishing the induction and may be difficult or
impossible.

4. Since the statement is true for n =1 [from step 1] it must [from step 3| be true
for n =141 =2 and from this for n = 2+ 1 = 3, ete., and so must be true for

all positive integers.

Solved Problems

OPERATIONS with NUMBERS

1. Ifx=4,y=15,2=-3,p=3%,q=—%, and r=1%, evaluate (a) x + (¥ +2), (b) (x +v) + 2,
(c) p(ar), (d) (pa)r, (e) z(p +q).
(@ @+ (@y+z) =4+[15+(=3)] = 4+12 = 16

b) (x+y)+z=(4+15)+(-8) = 19—3 = 16
The fact that (a¢) and (b) are equal illustrates the associative law of addition.

(e) p(gr) = H{(=PE)N} = B = @Y = &K = —&
@ @or = {@PEE) = CHED) = DB = -F = -

The fact that (¢) and (d) are equal illustrates the associative law of multiplication.
() z(p+q) =43 -3 =4G—3 =4Q) = ¢ =2

Another method: z(p+4q) = xp +xg = (4)(3) + @)(—}) = g—% = %—% = g = 2 using the
distributive law.
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1
Explain why we do not consider (a) % (b) 0 s numbers.

(a) If we define a/b as that number (if it exists) such that bx = a, then 0/0 is that number « such that
0x = 0. However, this is true for all numbers. Since there is no unique number which 0/0 can
represent, we consider it undefined.

(b) As in (a), if we define 1/0 as that number z (if it exists) such that Ox =1, we conclude that there
is no such number.

Because of these facts we must look upon division by zero as meaningless.

feyepe, 02+ 6
Slmphfy m .

2?—5x+6 _ (x—38)(x—2)  xz—2
2*—2x—3  (x—3)(x+1) x+1

x# 3. For x =3 the given fraction is undefined.

provided that the cancelled factor (x—3) is not zero, i.e.

RATIONAL and IRRATIONAL NUMBERS

4.

Prove that the square of any odd integer is odd.

Any odd integer has the form 2m + 1. Since (2m+1)*> = 4m? + 4m + 1 is 1 more than the even
integer 4m*® + 4m = 2(2m?+ 2m), the result follows.

Prove that there is no rational number whose square is 2.

Let p/q be a rational number whose square is 2, where we assume that p/q is in lowest terms, i.e.
p» and ¢ have no common integer factors except =1 (we sometimes call such integers relatively prime).

Then (p/q)* =2, p* = 2¢* and p*is even. From Problem 4, p is even since if p were odd, p* would
be odd. Thus p =2m.

Substituting p = 2m in p? = 2q* yields ¢* = 2m?, so that ¢* is even and g is even.

Thus p and ¢ have the common factor 2, contradicting the original assumption that they had no
common factors other than =1. By virtue of this contradiction there can be no rational number
whose square is 2.

Show how to find rational numbers whose squares can be made arbitrarily close to 2.
We restrict ourselves to positive rational numbers. Since (1)>=1 and (2)* =4, we are led to choose
rational numbers between 1 and 2, e.g. 1.1,1.2,1.3,...,1.9.

Since (1.4)*=1.96 and (1.5)* =2.25, we consider rational numbers between 1.4 and 1.5, e.g. 1.41,
1.42,...,1.49.

Continuing in this manner we can obtain closer and closer rational approximations, e.g.
(1.414213562)? is less than 2 while (1.414213563)% is greater than 2.

Given the equation a¢2™ + a12* ! + ... + ¢» = 0 where ao,a4,...,a, are integers
and ao and a,+# 0. Show that if the equation is to have a rational root p/q, then p
must divide e, and ¢ must divide a, exactly.

Since p/q is a root we have, on substituting in the given equation and multiplying by ¢", the result

a@p® + arip"'q + a:p" ¢t + - + @u-apg" ' + oang® = 0 (1)
or dividing by p,
ﬂmqu
5 (2)
Since the left side of (2) is an integer the right side must also be an integer. Then since p and q are
relatively prime, p does not divide g™ exactly and so must divide an.
In a similar manner, by transposing the first term of (7) and dividing by ¢, we can show that ¢
must divide ao.

aopn—l + alpn-zq 4+ ...+ a"_lqn—l e

Prove that /2 +1/3 cannot be a rational number.

If 2=1V2+V3 then 2® = 5+2V/6, 22—5 = 21/6 and squaring, «*—10x*+1 = 0. The
only possible rational roots of this equation are =1 by Problem 7, and these do not satisfy the equation.
It follows that \/5 + \/§, which satisfies the equation, cannot be a rational number.
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9. Prove that between any two rational numbers there is another rational number.

If @ and b are rational numbers, then a-;b is a rational number between a and b.
a+b

-

To prove this assume a < b. Then by adding @ to both sides, 2¢ < a+ b and a < 2

Similarly adding b to both sides, a +b < 2b and a,-;—b < b.
Thus a < Q%Il < b.

To prove that at+bd is a rational number, let a = P and b = L where p, q,r,s are integers and
2 q s
q#0, s#0.
Then il = 1 2-&- L = L8 + ar = me Fior is a rational number.
2 2\qg s 2\ 98 gs 2gs
INEQUALITIES

10. For what values of x is 2 +32—2) = 4— 2 ?
x+32—x) =Z4—x when ¢ +6—-3x =4—x, 6—2x =2 4d—x, 6—4 = 2v—2, 2=z, ie. x =2.

11. For what values of z is 2?2—3xz—2 < 10 —2z ?
The required inequality holds when
22—3x—2—10+2x < 0, a2*—2x—12 < 0 or (x—4)(x+3) < 0
This last inequality holds only in the following cases.
Casel: x—4 >0 and *+3 <0, iie. x >4 and = < —3. This is impossible since x cannot be
both greater than 4 and less than —3.

Case2: v—4<0 and 2+3 >0, i.e. £<4 and « > —3. This is possible when —3 < x < 4.
Thus the inequality holds for the set of all x such that —3<x <4.

12. If a=0 and b =0, prove that i(a+Db) = y/ab.

A method of proof is often arrived at by assuming the required result to be true and performing
valid operations until a result is obtained which is known to be true. By reversing the steps (assuming
this possible) the proof follows.

In this problem we start with the required result to obtain successively a+b = 2V/ab, (@ +b)* =
4ab or a*—2ab+b* = 0, i.e. (a—b)*> = 0, which is known to be true. Retracing the steps, the
result follows.

Another method: Since (Va— \,/3)2 = 0 we have a—2Vab+b = 0 or $a+b) = Vabd.
aitas+ -+ an

This result can be generalized to et = Vaia:--- an where ay, .. .,@, are non-
negative. The left and right sides are called respectively the arithmetic mean and geometric mean
of the numbers ai, ..., G

13. If as, @2, ...,an and by, by, ...,b, are any real numbers, prove Schwarz’s inequality

2

(@1b1 + @bz + - + @abn)? = (al+ai+ - +al)(bi+ 05+ - +b2)

For all real numbers A\, we have
(al)\+bl)2 + (aZ)‘+b2)2 + -+ (an>\+bn)z = 0

Expanding and collecting terms yields

A*N 4+ 20N + B = 0 (1)
where
A* =aitai+---+an, B*=bi+bit+...+bi, C = arbi+asbs+ -+ a.bn @)
Now (I) can be written
20C B2 2 ) 2
}\Z+F)\+Z§§0 or <)\+ZC—2> +§—2—~%20 (3)

2 2
But this last inequality is true for all real \ if and only if % — % = 0 or C®= A*B®* which

gives the required inequality upon using (2).
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14. Prove that % + % + % + oo tgemr < 1 for all positive integers n> 1.
Let Se=d it ot
Th 18, = 1 1 1
en §5. = Ptdt ot
. 1 1
Subtracting, 1S. = § — o Thus S, =1 — o1 < 1 for all n.
EXPONENTS, ROOTS and LOGARITHMS
15. Evaluate each of the following.
34,38 34+i g1t _ . 1 . 1
@ g = w T =T =g =g
(5-10"%(4-10%) _ 5.4 107°-10* _ —— _ — s oan-
(b) \[——8.—105 = g T s - = V25-107° = V25:107° = 5-107° or 0.00005

(¢) logs(}) =2 Then (3)* =% = ()* = (P or x=-3.
(d) (logab)(logba) = u. Let logeb = z, logra = y assuming a,b > 0 and a,b +# 1.

Then a*=b, b¥=a and u =xy.
Since (a®)!=a® =bY=a we have a® =a' or xzy =1 the required value.

M
16. If M>0, N>0 and a>0 but a+1, prove that logaﬁ = logeM — log.N.
Let logaM = 2, loga N =y. Then a*=M, a* =N and so
M a* . M _ _ _ _
N o a7y or logaﬁ = x y = logsM loga N
COUNTABILITY
17. Prove that the set of all rational numbers between 0 and 1 inclusive is countable.
Write all fractions with denominator 2, then 3, ... considering equivalent fractions such as
%,f,g, ... no more than once. Then the 1-1 correspondence with the natural numbers can be accom-
plished as follows.
Rational numbers 01 3% 3 3131 %
1T10000°07
Natural numbers 1 23 45 6 7 8 9

Thus the set of all rational numbers between 0 and 1 inclusive is countable and has cardinal
number R, (see Page 4).

18. If A and B are two countable sets, prove that the set consisting of all elements from
A or B (or both) is also countable.
Since A is countable, there is a 1-1 correspondence between elements of A and the natural num-
bers so that we can denote these elements by ai, asas,....
Similarly we can denote the elements of B by b, bs,bs, .. ..

Case 1: Suppose elements of A are all distinct from elements of B. Then the set consisting of elements
from A or B is countable since we can establish the following 1-1 correspondence.

A or B ay bl az bz as b:;
113 ¢ 0 ¢
1 2 3 4 5 6

Natural numbers

Case 2: If some elements of A and B are the same, we count them only once as in Problem 17. Then
the set of elements belonging to A or B (or both) is countable.



