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Preface

In recent years the demand for skills in linear algebra has increased at a rapid pace. In
addition to engineering, physics, and economics majors, enrollment in linear algebra
classes now includes those majoring in computer science, operations research, psychol-
ogy, and biology. Of course, the use of linear algebra in multivariate statistics has made
the subject a natural requirement for those students wishing to pursue a career in other
quantitative areas. The presence of so diverse an audience as well as the importance of
applications to mathematics majors has influenced our decision to include a wide variety
of significant applications. Rather than postpone these applications to the end of the text,
we have made an effort to introduce them as the necessary background is developed.

The material is aimed at the sophomore—junior student. There is no use of calculus
until the introduction of function spaces in Chapter 8. The core topics include: the vector
space properties and Euclidean n-space, systems of linear equations, matrices, linear
transformations, determinants, and eigenvalues and eigenvectors. In addition, orthogonal
diagonalization, abstract vector spaces, numerical methods for solving systems and for
finding eigenvalues and eigenvectors, and linear programming are covered.

Approach: Through experience, we have discovered that students without a back-
ground in abstract mathematics find abstract vector spaces very difficult to comprehend.
We have therefore decided to introduce the notion of vector spaces and their properties
through the familiar Euclidean n-spaces. What we believe is unique about this text is the
spiral approach that is employed. Instead of introducing all the material about systems,
followed by all the material on vector spaces, followed by all the material on linear
transformations and matrices, we have made an effort to ease the student gently into the
elementary properties of all these topics before the advanced properties are introduced.

Xi
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Not only are the concepts easier to assimilate, but the student sees the interplay between
the various structures early in the development. For example, after linear combinations
are introduced, systems are presented as a means of discovering if a given vector is a
linear combination of other vectors. Matrices are then needed as a convenient notation for
using Gaussian elimination. Once matrices are introduced, their arithmetic is motivated
by an example of a Markov process. Matrix multiplication provides the motivation for the
definition of a linear transformation and its matrix representation. Now it makes sense to
talk about the subspaces associated with a linear transformation, namely, the null space
and range. All of this is done before the more difficult concepts of linear independence,
basis, and dimension are introduced.

We are firm believers in the use of geometry to motivate as well as clarify many of
the topics of linear algebra. For example, the application of the elementary properties of
vector arithmetic are used to show that the diagonals of a rhombus bisect one another. The
determination of the null space, range, eigenspaces, and other characteristics of the
geometric transformations—rotations, projections, reflections, and shear transforma-
tions—permeate the exercises and examples.

The microcomputer as a tool is ever present in this text. Throughout the exercise
sets, problems preceded by (*) are to be done on a microcomputer. A diskette, which
includes a number of useful programs for working these problems (see Appendix B), is
available to adopters of the text. In addition, the idea of operation counts (for example, in
the solution to systems or in the computation of determinants) is used as a measure of
computational efficiency.

Chapter 1 introduces the elementary properties of vector operations; norm and dot
product in Euclidean 2-, 3-, and n-space; linear combinations and subspaces; systems of
linear equations and Gaussian elimination; and matrices as a tool for manipulating sys-
tems. Included are examples illustrating the power of linear algebra to establish results in
geometry.

Chapter 2 introduces the elementary properties of matrix arithmetic. Five significant
applications of matrices are given to illustrate their power. Left-multiplication by a matrix
introduces the concept of a linear transformation. The null space and range of a linear
transformation are given as examples of subspaces and as tools for studying additional
properties of systems.

Chapter 3 moves the reader into the more sophisticated concepts of linear indepen-
dence, basis, rank, and dimension. These ideas are united with the earlier concepts of
system, null space, and range to provide deeper insights. For example, the dimension
theorem is proved and used to establish information about solution spaces. The properties
of matrix inverses are established. The construction of the inverse of a matrix is accom-
plished with the introduction of elementary matrices. The results are then applied to the
Leontief closed and open economic models. Finally, additional theoretical results about
systems are proved.

Chapter 4 introduces change of coordinate vectors and various matrix representa-
tions of a linear transformation. This material forms the necessary background for diago-
nalization.

Chapter 5 begins with the definition of the determinant of a 2 X 2 matrix and its
properties. These properties are then extended to determinants of n X n matrices. The
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basic approach is to establish the properties for elementary matrices and then use the fact,
established earlier, that every invertible matrix is a product of elementary matrices. The
chapter is concluded with Cramer’s rule, the classical adjoint, and an application to
cryptography.

Chapter 6 introduces perhaps the most important concept in linear algebra—diago-
nalization. The basic results concerning eigenvalues, eigenvectors, and necessary and
sufficient conditions for the diagonalization of a matrix or linear transformation are
established. The results are then applied to solving difference equations, examining the
long-term behavior of Markov chains, and solving systems of differential equations.

Chapter 7 is concerned with the properties of orthogonal sets. The Gram—Schmidt
process is used to prove that every subspace of R” has an orthonormal basis. Diagonaliza-
tion of a symmetric matrix by an orthogonal matrix is used to transform a quadratic
expression into standard form. Orthogonal projections are carefully developed and applied
to derive the least-squares formula. Finally, rotation matrices are applied to computer
graphics.

Chapter 8 utilizes most of the previous material to develop abstract vector spaces.
The emphasis, however, is on function spaces. The differential operator is given as a
special case of a linear transformation on an infinite-dimensional vector space. The
chapter concludes with the elementary properties of inner product spaces.

Chapter 9 provides a somewhat more extensive treatment of numerical methods
than most texts at this level. For solving systems we describe the direct methods—
pivoting, the LU- and Cholesky decompositions, and the iterative methods—the Jacobi
and the Gauss—Seidel methods. For estimating eigenvalues, Gerschgorin’s theorem is
proved. Finally, for estimating eigenvalues and eigenvectors, the power and inverse
power methods as well as the deflation method are developed and illustrated. Exercises
are given which use the programs listed in Appendix B and are included on the diskette.
The sections of this chapter are independent and thus may be covered in any order or
omitted.

Chapter 10 introduces linear programming. The development is divided into two
parts. The first part introduces some terminology and the graphical method. The second
part describes the simplex method.

Complex numbers: On the advice of several reviewers, we decided to include
examples where complex numbers play an important role, especially when eigenvalues
are considered. For example, harmonic motion is illustrated as a case when complex
eigenvalues are particularly important. Also, Gerschgorin’s theorem takes on a different
geometrical interpretation if complex eigenvalues are considered. Appendix A is included
to establish the elementary properties of complex numbers. No interruption of the flow of
the material will occur if complex numbers are entirely deleted from the presentation.

Notation: The results of problems preceded by a dagger (1) are used in subsequent
sections.

Dependencies within the material: All the applications are independent of one
another and of the rest of the material. In Section 5.3, the classical adjoint is used only in
the application to cryptography. The following flowchart indicates the other dependencies
within the material.

Numbering: We have numbered our theorems, lemmas, and corollaries by chapter



Xiv

Preface

\%
Chap. 10

Chap ﬂ [Chap 5 | ISec QJ

Chap. 6
Y Y \

[Chap 7J Sec58182 83J ISec 92J lSec93J

and section. For example, Theorem 3.2.1 is the first theorem in the second section of
Chapter 3. Tables and figures are each numbered similarly. Examples are numbered
sequentially within each section.

We would like to express our thanks to the following people who carefully reviewed
our manuscript and made many helpful suggestions: Carl C. Cowen, Mathematics Depart-
ment, Purdue University; Vincent Giambalvo, Mathematics Department, University of
Connecticut; Terry L. Herdman, Mathematics Department, Virginia Polytechnic Institute
and State University; Kenneth Kalmanson, Computer Science Department, Montclair
State College; Robert H. Lohman, Mathematical Sciences Department, Clemson Univer-
sity.

In addition, special thanks go to the staff of Prentice-Hall, especially Fay Ahuja,
production editor, and Robert Sickles, mathematics editor. We are also grateful to Ken
Hirschel for proofreading the galleys.

Finally, we are indebted to our colleagues and students for their insightful com-
ments and their encouragement.
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Introduction to the Vector
Space Properties of R”
and Systems of Linear

Equations

In this chapter we introduce the vector space properties of Euclidean n-space.
Although the notion of vector was introduced in the nineteenth century primarily by
the Irish mathematician W. R. Hamilton, its usefulness in real-world applications,
particularly in physics, was not recognized until the twentieth century. More recently,
the important properties of vectors have been exploited in such areas as the social and
biological sciences, as well as in statistics.

We begin this chapter with the most important Euclidean space, namely, the
plane. It is in this space that we can take advantage of our ability to visualize many of
the geometric properties of vectors. With this introduction in place, it will be easier to
understand the properties of vectors in Euclidean n-space.

1.1 VECTORS IN R?

Example 1

Certain physical quantities, such as length, area, speed, and mass, can be described by
a single number or magnitude. However, others, such as velocity and force, require
both a magnitude and a direction.

The velocity of an object is described by giving its speed and direction. The speed, a
nonnegative number, is the magnitude of the velocity. Suppose that x denotes the
velocity of an object traveling 20 miles per hour in a northeast direction. Geometri-
cally, x can be represented as an arrow, that is, a directed line segment of length 20
which points northeast (see Figure 1.1.1).
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Example 2

Vector Space Properties of R” and Systems of Linear Equations

N

S Figure 1.1.1

Let f be the force exerted by the weight of a 200-pound man. The magnitude of this
force is 200 and the direction is toward the center of the earth. Geometrically, this
force can be represented as an arrow of length 200 which points from the man to the
earth’s center (see Figure 1.1.2).

X

Figure 1.1.2

Any quantity determined by both a magnitude and a direction is called a vector.
The velocity and force described in Examples 1 and 2, respectively, are each examples
of vectors. Acceleration is another example of a vector. Two vectors are considered to
be equal if they have the same direction and magnitude.

A vector may be represented geometrically as an arrow or directed line segment.
The line segment is pointing in the direction of the vector, and its length is the
magnitude of the vector. The tail and head of this arrow are called the initial and
terminal points, respectively. The arrow whose initial point is 4 and whose terminal

point is B will be denoted by AB.

Referring to Figure 1.1.3, we see that AB and CD have the same magnitude and
direction. Therefore, they represent the same vector. The fact that different directed
line segments may represent the same vector is very useful. For example, the vector
that represents the velocity of a car traveling northeast at 30 miles per hour on a
particular road also represents the velocity of that car if it were traveling at the same

speed and direction on another road. The arrow @ is pointing in the same direction

B D R

Q

A c / =

P Figure 1.1.3
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as AB but it is shorter and so it does not represent the same vector as AB. The arrow
RS has the same length as AB but it is pointing in a different direction. Therefore, it
does not represent the same vector as AB.

Two directed line segments such as AB and CD in Figure 1.1.3 which determine
the same vector, that is, which have the same direction and are of equal length, are

called equivalent. The vector they both represent is denoted by either AB or CD. We
may write

_— —
AB =CD

Vectors in the Plane

It is useful to consider vectors in the context of a rectangular coordinate system.
Consider the familiar coordinate system of the xy-plane. We identify a point in the
plane with its coordinates. O = (0, 0) is called the origin of the system. Consider a
vector P_é in the xy-plane. Suppose that P = (a, b) and Q = (¢, d) (see Figure 1.1.4).
Setting C =(¢c —a,d — b), A =(c—a,0), and R = (¢, b), we see that the (right)
triangles OCA and PQR have legs of equal length and so are congruent. Therefore, the
vectors OC and P_Q’ have the same magnitude. Since 0A and PR have the same
direction, it follows that &:’ and P_Q) also have the same direction and hence are equal.
Summarizing, we have:

For any points P = (a,b) and Q = (c,d) in the plane, the vector P—é can be
identified with the vector O—C: where C = (¢ — a,d — b).

We call ¢ — a the first component (or x-component) and d — b the second component
(or y-component) of the vector P_Q’ In this manner, any vector x in the xy-plane can be
associated with a unique ordered pair of real numbers, namely, its components. In our
notation above, if x = FQ: we may also write x = (¢ — a, d — b). Conversely, given
any point D = (p, q) in the xy-plane, the vector y = 0D has components p and g and
we may write y = (p, q). Thus, there is a one-to-one correspondence between vectors
in the plane and ordered pairs. We also denote the set of all vectors in the plane by R2.

y

A

Q (c, d)

C(c—a d-b)

|
|
| Pl ———— OR(c,b)
|

il L L ¢
o Al(c —a,0) Figure 1.1.4
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Example 3

Example 4

Vector Space Properties of R” and Systems of Linear Equations

Some authors use a different notation for points than for vectors. Usually, the
context in which an ordered pair is used will make it clear whether we mean a point or

a vector.
From this definition of components, we see that two vectors are equal if and

only if their corresponding components are equal.

Let A =(2,3),B=(52),C=(3,8),and D = (6, 7). We wish to show that AB = CD.
Clearly, the first component of AB is 5—2= 3, and the second component is
2 — 3 = —1. Similarly, the first and second components of CD are 3 and — 1,
respectively. Therefore, AB = CD.

Consider again the velocity vector x of Example 1. If the positive direction of the
y-axis points north and the initial point of the directed line segment representing x is
placed at the origin, it can be shown using trigonometry that the terminal point of x is
the ordered pair (10 \/5 10 \/ 2). Thus, these coordinates are the components of the
vector x [see Figure 1.1.5(a)], that is, x = (10\/5, 10 \/5).

The components of the force f of Example 2 depend on the orientation of the
coordinate system. If the coordinate system is oriented so that the man is at the origin
and the negative direction of the y-axis points toward the earth’s center, the first
component of fis 0 and the second is —200 [see Figure 1.1.5(b)]. So f = (0, —200).

(10v/2,10v2)

( X

f Y (0, —200)

(a) (b) Figure 1.1.5

Vectors have uses other than to represent physical quantities such as velocity
and force. For example, a vector might be constructed for each person in a group in
which the first component gives the height (in feet) and the second component gives
the weight (in pounds). In this case, we have as many vectors as there are people in the
group. In the study of Markov chains in Chapter 6, the components represent
particular probabilities.

Consider a system of two linear equations in two unknowns:

2x+ y=0
3x —2y=17
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We shall learn how to solve such systems later in this chapter. It is easy to verify
that x =1 and y = —2 is a solution to this system. Rather than expressing this
solution by two equations, we can make use of one (vector) equation using the vector
y = (x, y) = (1, —2). This notation will be of considerable use in Chapter 2.

Vectors would be of little interest if they were used merely to describe properties,
as in the examples above. They are useful because there is an arithmetic defined on
them. This arithmetic allows us to make certain calculations in order to draw new
conclusions about vector properties.

Suppose that a train is traveling at a speed of 60 miles per hour while a passenger
is walking toward the front of the train at 2 miles per hour. Then the velocity of the
passenger relative to the ground is 60 + 2 = 62. Similarly, if the passenger is walking
toward the back of the train at 2 miles per hour, her velocity relative to the train is —2
miles per hour, and her velocity relative to the ground is 60 + (—2) = 58 miles per
hour. It is clear that the operation of addition can be used to combine velocities.

Now we consider a comparable situation in the xy-plane. Suppose that a pilot
aims an airplane in a particular direction and that the airplane moves at a certain
“airspeed,” that is, the speed relative to the surrounding air. Then the airplane has a
velocity x relative to the air around it. Now suppose that at the same time the air or
wind is moving relative to the ground with a given speed and direction. Suppose that
the motion of the wind has a velocity y. We combine the velocity of the airplane
relative to the air and the velocity of the wind relative to the ground to determine the
velocity of the airplane relative to the ground. Call this combined velocity z. Let us see
how to compute z. Imposing a coordinate system whose positive x-axis points east
and whose positive y-axis points north, suppose that x = (a, b) and y = (¢, d). Then a
and ¢ represent the horizontal (east-west) components of x and y, respectively. As with
the example of the passenger on the train, it follows from physics that these
components can be added to yield the horizontal component of the combined
velocity, namely, a + ¢. Similarly, b + d is the vertical (north-south) component of the
combined velocity. Therefore, z = (a + ¢, b + d).

The operation of combining two vectors by adding the corresponding compo-
nents is called vector addition.

Let x = (a, b) and y = (¢, d) be two vectors in R?. We define the sum of x and y,
denoted by x + y, to be the vector in R? defined by

X+y=(@a+c b+d)

For example, if x = (1, —2) and y = (2, 4), then x + y = (3, 2).

There is also a geometric interpretation of vector addition which is quite useful.
Using facts about congruent (right) triangles (see Figure 1.1.6), it follows that if the
sides of a parallelogram are determined by the vectors x and y, the sum z = x + y is
given by a diagonal of the parallelogram. This result is called the parallelogram law
of vector addition.
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(a+c, b+d)

Figure 1.1.6

It is interesting to consider the parallelogram law in the context of our airplane
example. Recall that the velocity (relative to the air) of the airplane is given by x, the
wind velocity is given by y, and the resulting velocity (relative to the ground) of the
airplane is given by z. If x and y are in approximately the same direction, then the
airplane’s speed (relative to the ground), which is given by the magnitude of z, is
increased [see Figure 1.1.7(a)]. On the other hand, if x and y are approximately in
opposite directions, then the magnitude of z is decreased [see Figure 1.1.7(b)]. Of
course, this agrees with our intuition about the effect of wind on the velocity of an
object.

The same physical interpretation that we have given to the sum of velocity
vectors may also be applied to the sum of vectors that represent forces [see Exercise
2(b) and (d)].

Vector addition may be easily extended to sums of more than two vectors. For
example, if x, y, and u are three vectors, we may define theirsumzasz = (x +y) + u.
It is easy to see that z may also be determined by x + (y + u). For example, if x =
(a, b), y = (c,d), and u = (e, f), then

z=(x+y)+u
=(@a+c,b+d)+ (e f)
=(a+c)+eb+d+f)
=(@+(c+e,b+d+f)
=(ab)+(c+ed+f)
=X+ (y +u
The result above is the associative law for vector addition. 1t allows us to omit
parentheses and write z=x + y + u. The short proof of this fact illustrates a

technique which will be employed again. Namely, the associative law of addition of
real numbers has been used to establish the associative law of vector addition. The fact



