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PREFACE TO THE SECOND EDITION

In preparing the second edition of this volume, an effort
has been made to adapt the book to the teaching requirements
of our engineering schools.

With this in view, a portion of the material of a more
advanced character which was contained in the previous edi-
tion of this volume has been removed and will be included in
the new edition of the second volume. At the same time,
some portions of the book, which were only briefly discussed
in the first edition, have been expanded with the intention of
making the book easier to read for the beginner. For this
reason, chapter II, dealing with combined stresses, has been
entirely rewritten. Also, the portion of the book dealing with
shearing force and bending moment diagrams has been ex-
panded, and a considerable amount of material has been added
to the discussion of deflection curves by the integration
method. A discussion of column theory and its application
has been included in chapter VIII, since this subject is usually
required in undergraduate courses of strength of materials.
Several additions have been made to chapter X dealing with
the application of strain energy methods to the solution of
statically indetermined problems. In various parts of the
book there are many new problems which may be useful for
class and home work.

Several changes in the notations have been made to con-
form to the requirements of American Standard Symbols for
Mechanics of Solid Bodies recently adopted by The American
Society of Mechanical Engineers.

It is hoped that with the changes made the book will be
found more satisfactory for teaching the undergraduate
course of strength of materials and that it will furnish a better
foundation for the study of the more advanced material

discussed in the second volume.
S. TIMOSHENKO
PaLo Avrto, CALIFORNIA

June 13, 1940
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PREFACE TO THE FIRST EDITION

At the present time, a decided change is taking place in
the attitude of designers towards the application of analytical
methods in the solution of engineering problems. Design is
no longer based principally upon empirical formulas. The im-
portance of analytical methods combined with laboratory
experiments in the solution of technical problems is becoming
generally accepted.

Types of machines and structures are changing very rap-
idly, especially in the new fields of industry, and usually time
does not permit the accumulation of the necessary empirical
data. The size and cost of structures are constantly increas-
ing, which consequently creates a severe demand for greater
reliability in structures. The economical factor in design
under the present conditions of competition is becoming of
growing importance. The construction must be sufficiently
strong and reliable, and yet it must be designed with the
greatest possible saving in material. Under such conditions,
the problem of a designer becomes extremely difficult. Re-
duction in weight involves an increase in working stresses,
which can be safely allowed only on a basis of careful analysis
of stress distribution in the structure and experimental investi-
gation of the mechanical properties of the materials em-
ployed.

It is the aim of this book to present problems such that the
student’s attention will be focussed on the practical applica-
tions of the subject. If this is attained, and results, in some
measure, in increased correlation between the studies of
strength of materials and engineering design, an important
forward step will have been made.

The book is divided into two volumes. The first volume
contains principally material which is usually covered in
required courses of strength of materials in our engineering
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vi PREFACE TO THE FIRST EDITION

schools. The more advanced portions of the subject are of
interest chiefly to graduate students and research engineers,
and are incorporated in the second volume of the book. This
contains also the new developments of practical importance in
the field of strength of materials.

In writing the first volume of strength of materials, atten-
tion was given to simplifying all derivations as much as
possible so that a student with the usual preparation in math-
ematics will be able to read it without difficulty. For example,
in deriving the theory of the deflection curve, the area moment
method was extensively used. In this manner, a considerable
simplification was made in deriving the deflections of beams for
various loading and supporting conditions. In discussing
statically indeterminate systems, the method of superposition
was applied, which proves very useful in treating such problems
as continuous beams and frames. For explaining combined
stresses and deriving principal stresses, use was made of the
Mohr’s circle, which represents a substantial simplification in
the presentation of this portion of the theory.

Using these methods of simplifying the presentation, the
author was able to condense the material and to discuss some
problems of a more advanced character. For example, in
discussing torsion, the twist of rectangular bars and of rolled
sections, such as angles, channels, and I beams, is considered.
The deformation and stress in helical springs are discussed in
detail. In the theory of bending, the case of non-symmetrical
cross sections is discussed, the center of twist is defined and
explained, and the effect of shearing force on the deflection of
beams is considered. The general theory of the bending of
beams, the materials of which do not follow Hooke’s law, is
given and is applied in the bending of beams beyond the yielding
point. The bending of reinforced concrete beams is given
consideration. In discussing combinations of direct and bend-
ing stress, the effect of deflections on the bending moment is
considered, and the limitation of the method of superposition
is explained. In treating combined bending and torsion,
the cases of rectangular and elliptical cross sections are dis-
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cussed, and applications in the design of crankshafts are
given. Considerable space in the book is devoted to methods
for solving elasticity problems based on the consideration of
the strain energy of elastic bodies. These methods are ap-
plied in discussing statically indeterminate systems. The
stresses produced by impact are also discussed. All these
problems of a more advanced character are printed in small
type, and may be omitted during the first reading of the book.

The book is illustrated with a number of problems to
which solutions are presented. In many cases, the problems
are chosen so as to widen the field covered by the text and to
illustrate the application of the theory in the solution of design
problems. It is hoped that these problems will be of interest
for teaching purposes, and also useful for designers.

The author takes this opportunity of thanking his friends
who have assisted him by suggestions, reading of manuscript
and proofs, particularly Messrs. W. M. Coates and L. H.
Donnell, teachers of mathematics and mechanics in the
Engineering College of the University of Michigan, and Mr.
F. L. Everett of the Department of Engineering Research
of the University of Michigan. He is indebted also to Mr.
F. C. Wilharm for the preparation of drawings, to Mrs. E. D.
Webster for the typing of the manuscript, and to the Van
Nostrand Company for its care in the publication of the book.

S. TIMOSHENKO
ANN ArRBOR, MICHIGAN
May 1, 1930



NOTATIONS

Gz, 0y, 0;. ... Normal stresses on planes perpendicular to x, y

and z axes.

O vvnnenns Normal stress on plane perpendicular to direction
n.

T, smmuns Normal stress at yield point.

. Normal working stress

T dgmass 5 4 Shearing stress

Teys Tyzy T2z . Shearing stresses parallel to x, y and 2z axes on the
planes perpendicular to y, z and x axes.

Twe eovnennn Working stress in shear

Bonsnumus s Total elongation, total deflection

€ Unit elongation

€2y €y €50 v . Unit elongations in x, y and 2 directions

Voo Unit shear, weight per unit volume

E..........Modulus of elasticity in tension and compression

G.......... Modulus of elasticity in shear

B Poisson’s ratio

Aol Volume expansion

K......... Modulus of elasticity of volume

M, ....... Torque

M......... Bending moment in a beam

V... ...... Shearing force in a beam

F. (PP Cross sectional area

P s s s ¢ 2 Moments of inertia of a plane figure with respect
to y and 2z axes

by By oo Radii of gyration corresponding to [y, I,

D (P Polar moment of inertia

Zervssvrnsss Section modulus

& SSPRR Torsional rigidity

T Length of a bar, span of a beam

P« Concentrated forces

Fon s bimmnns Temperature, thickness

ix



NOTATIONS

Coefficient of thermal expansion, humerical coef-
ficient

Strain energy

Strain energy per unit volume

Depth of a beam, thickness of a plate

Load per unit length

Angles

Pressure

Diameters

..Radii

Weight, load
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STRENGTH OF MATERIALS
PART 1

CHAPTER 1

TENSION AND COMPRESSION WITHIN THE ELASTIC LIMIT

1. Elasticity.—We assume that a body consists of small
particles, or molecules, between which forces are acting.
These molecular forces resist the change in the form of the
body which external forces tend to produce. If such external
forces are applied to the body, its particles are displaced and
the mutual displacements continue until equilibrium is estab-
lished between the external and internal forces. It is said
in such a case that the body is in a state of strain. During
deformation the external forces acting upon the body do
work, and this work is transformed completely or partially
into the potential energy of strain. An example of such an
accumulation of potential energy in a strained body is the
case of a watch spring. If the forces which
produced the deformation of the body are W
now gradually diminished, the body returns |
wholly or partly to its initial shape and dur- |
ing this reversed deformation the potential l

energy of strain, accumulated in the body,
may be recovered in the form of external
work. @

Take, for instance, a prismatical bar
loaded at the end as shown in Fig. 1.
Under the action of this load a certain elon-
gation of the bar will take place. The point of application
of the load will then move in a downward direction and
positive work will be done by the load during this motion.

1

|
M‘T"Tn
|

FiG. 1.



2 STRENGTH OF MATERIALS

When the load is diminished, the elongation of the bar dimin-
ishes also, the loaded end of the bar moves up and the poten-
tial energy of strain will be transformed into the work of
moving the load in the upward direction.

The property of bodies of returning, after unloading, to
their initial form is called elasticity. It is said that the body
is perfectly elastic if it recovers its original shape completely
after unloading; it is partially elastic if the deformation,
produced by the external forces, does not disappear com-
pletely after unloading. In the case of a perfectly elastic
body the work done by the external forces during deformation
will be completely transformed into the potential energy of
strain. In the case of a partially elastic body, part of the
work done by the external forces during deformation will be
dissipated in the form of heat, which will be developed in the
body during the non-elastic deformation. Experiments show
that such structural materials as steel, wood and stone may
be considered as perfectly elastic within certain limits, which
depend upon the properties of the material. Assuming that
the external forces acting upon the structure are known, it is
a fundamental problem for the designer to establish such
proportions of the members of the structure that it will
approach the condition of a perfectly elastic body under all
service conditions. Only under such conditions will we have
continued reliable service from the structure and no permanent
set in its members.

2. Hooke’s Law.—By direct experiment with the exten-
sion of prismatical bars (Fig. 1) it has been established for
many structural materials that within certain limits the elon-
gation of the bar is proportional to the tensile force. This
simple linear relationship between the force and the elonga-
tion which it produces was first formulated by the English
scientist Robert Hooke ! in 1678 and bears his name. Using
the notation:

P = force producing extension of bar,
/ = length of bar,

! Robert Hooke, De Potentia restitutiva, London, 1678.
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A = cross sectional area of bar,

& = total elongation of bar,

E = elastic constant of the material, called its Mod-
ulus of Elasticity,

Hooke’s experimental law may be given by the following
equation:

6 = ﬂ (1)
AE _
The elongation of the bar is proportional to the tensile force
and to the length of the bar and inversely proportional to
the cross sectional area and to the modulus of elasticity.
In making tensile tests precautions are usually taken to secure
central application of the tensile force. In this manner any
bending of the bar will be prevented. Excluding from con-
sideration those portions of the bar in the vicinity of the
applied forces,? it may be assumed that during tension all
longitudinal fibers of the prismatical bar have the same
elongation and the cross sections of the bar originally plane
and perpendicular to the axis of the bar remain so after
extension.

In discussing the magnitude of internal forces let us im-
agine the bar cut into two parts by a cross section mn and
let us consider the equilibrium of the lower portion of the
bar (Fig. 1, 4). At the lower end of this portion the tensile
force P is applied. On the upper end there are acting the
forces representing the action of the particles of the upper
portion of the strained bar on the particles of the lower
portion. These forces are continuously distributed over the
cross section. A familiar example of such a continuous dis-
tribution of forces over a surface is that of a hydrostatic
pressure or of a steam pressure. In handling such continu-
ously distributed forces the intensity of force, i.e., the force per
unit area, is of a great importance. In our case of axial
tension, in which all fibers have the same elongation, the

2 The more complicated stress distribution near the points of appli-
cation of the forces will be discussed later in Part II.
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distribution of forces over the cross section mn will be uni-
form. Taking into account that the sum of these forces,
from the condition of equilibrium (Fig. 1, 4), must be equal
to P and denoting the force per unit of cross sectional area
by o, we obtain

a=:§- (2)

This force per unit area is called stress. In the following,
the force will be measured in pounds and the area in square
inches so that the stress will be measured in pounds per square
inch. The elongation of the bar per unit length is deter-
mined by the equation

(3)

and is called the unit elongation or the tensile strain. Using
eqs. (2) and (3), Hooke’s law may be represented in the
following form:

€ =

~|

a

€=z (4)

and the unit elongation is easily calculated provided the stress
and the modulus of elasticity of the material are known. The
unit elongation € is a pure number representing the ratio of
two lengths (see eq. 3); therefore, from eq. (4), it may be
concluded that the modulus of elasticity is to be measured in
the same units as the stress o, i.e., in pounds per square inch.
In Table I, which follows, the average values of the modulus
E for several materials are given in the first column.?

Equations (1)-(4) may be used also in the case of the com-
pression of prismatical bars. Then & will denote the total
longitudinal contraction, e the compressive strain and o the
compressive stress. 'The modulus of elasticity for compression
is for most structural materials the same as for tension. In
calculations, tensile stress and tensile strain are considered
as positive, and compressive stress and strain as negative.

3 More details on the mechanical properties of materials are given in

Part II.
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TABLE 1
MEecHaNICAL PROPERTIES OF MATERIALS
. E Yield Point Ultimate Strength
M Is
aterials Ibs./in® Ibs./in.2 Ibe.fin?
Structural carbon steel o.15 to
0:35%p ‘carbon. .. ...« v wswisims v 30 X 10%| 30 X 10%-40 X 10* | 55 X 10%65 X 108
Nickel steel 3 to 3.5% nickel. . .| 29 X 10%| 40 X 10%-50 X 10* | 78 X 10%100 X 103
Duraluminum. ............... 10 X 10%| 35 X 10845 X 10° | 54 X 10%-65 X 10°
Copper, cold rolled............ 16 X 10° 28 X 10%-40 X 108
Glass: s s snmammine o5 v saammm 10 X 10° 3.5 X 108
Pine, with the grain........... 1.5 X 10° 8 X 10%-20 X 103
Concrete, in compression. ... ... 4 X 10° 3 X 108
Problems

1. Determine the total elongation of a steel bar 24 in. long, if the
tensile stress is equal to 15 X 10% lbs. per sq. in.
Answer.
2 1,
S i
2,000 8o

d=eX /=

2. Determine the tensile force on a cylindrical steel bar of one
inch diameter, if the unit elongation is equal to .7 X 1073.
Solution. The tensile stress in the bar, from eq. (4), is

o = e E = 21 X 10 ]bs. per sq. in.
The tensile force, from eq. (2), is

P=gA=21X10 XE = 16,500 lbs.

3. What is the ratio of the moduli of elasticity of the materials
of two bars of the same size if under the action of equal tensile forces
the unit elongations of the bars are in the ratio 1 : 15/8. Determine
these elongations if one of the bars is of steel, the other of copper and
the tensile stress is 10,000 lbs. per sq. inch.

Solution. The moduli are inversely proportional to the unit
elongations. For steel

10,000 1

€=3oxlo°=3,ooo’

for copper
I

€= Em———
1,600



