: f@«fﬂﬁii‘a R m@‘

e fiy =2 T T

D) R e A

s s .

ol

The MC68000

Assembly Language
and Systems Programming

William Ford

University of the Pacific

William Topp

University of the Pacific

D.C. HEATH AND COMPANY
Lexington, Massachusetts Toronto

Appendixes A-D © 1987 by Motorola, Inc.

Cover Photograph: HELIOPTIX by Henry Ries. Design by Miriam Recio.

Copyright © 1988 by D. C. Heath and Company.

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without permission in writing from the
publisher.

Published simultaneously in Canada.

Printed in the United States of America.
International Standard Book Number: 0-669-16085-7
Library of Congress Catalog Card Number: 87-81173
10 9 8 7 6 5

Preface

The assembly language and systems programming applications for the
Motorola 68000 family of microprocessors constitute the focus of this compre-
hensive text. The first nine chapters contain material suitable for a one-semester
course in assembly language programming. Chapters 10 through 14 cover ad-
vanced topics, including high-level language run-time environment, data struc-
tures, /O programming, exception processing, and interrupts, with a strong
emphasis placed on major applications of assembly language to systems pro-
gramming. This advanced material could be used as a major component for
courses in programming languages, systems programming, operating systems,
microcomputers, and computer organization. In addition, the style and the
level of detail in the text permit an individual to use the book for self-study
and allow instructors to assign supplemental reading as necessary.

Throughout the text, examples and complete programs are used exten-
sively to illustrate concepts, instructions and addressing modes. Their purpose
is to provide the reader with hands-on experience with the MC68000 proces-
sor, its assembly language, and applications. The high-level language Pascal is
used to clarify the more complex algorithms. Only a limited understanding of
Pascal is assumed, and this material can be skipped if desired.

The MC68000 is one of the most widely used 16-bit microprocessors. Its
sophisticated instruction set provides a powerful set of addressing modes, and
a well-designed assembly language is available for solving even the most com-
plex problems. Since the MC68000 is used in a variety of mictoprocessor-
based applications, developers involved with hardware and software at the
systems level are required to have a detailed understanding of its assembly lan-
guage and architecture. Although the main text describes the MC68000 assem-
bly language, most of the material also applies to the MC68008, the MC68010,
and the MCG68012 processors. Special instructions for these processors are

vii

viii

Preface

detailed in Appendix B. Appendix E includes a comprehensive introduction to
the 32-bit MC68020, detailing the architecture, addressing modes, data types,
and additional instructions of this newly popular processor.

Since 1/O programming is one of the most important applications for
assembly language, this text includes three /O libraries. The main library im-
plements numerical and character stream IO and can be used with system
redirection. A listing of its routines is given in Appendix E Chapter 12 intro-
duces an I/O library for the stand-alone Motorola Educational Board. This pack-
age uses the primitive routines GETCHAR and PUTCHAR that can be modified
for other stand-alone systems. Chapter 14 contains a complete interrupt-driven
I/O driver with buffering and flow control.

Chapter Descriptions

Chapters 1 through 7 present the basics of MC68000 assembly language and
include an introduction to MC68000 computer organization, the operation of
an assembler, the main instructions, and all addressing modes.

Chapter 1 introduces the concept of high-level language, assembly language,
and machine language code. A brief history of the MC68000 processor is
included.

Chapter 2 covers the number systems and arithmetic used in assembly lan-
guage programming. Readers unfamiliar with these topics will want to read
carefully definitions and examples since this material is fundamental to the rest
of the book.

Chapter 3 discusses the basic architecture and data organization of the MC68000.
The machine code format for instructions, including opcode words and exten-
sion words, is covered.

Chaprer 4 presents assembly language details along with basic addressing
modes and supporting instructions. A discussion of common syntax and run-
time errors is included.

Chapter 5 introduces control structures for assembly language programming
using the branch instructions. Algorithms to implement high-level language
conditionals and loop structures are covered.

Chapter 6 uses the concept of array access to cover the remaining MC68000
addressing modes. PC relative modes are introduced.

Chapter 7 discusses assembly language subroutines. Parameter passing using
registers, memory, and the stack is covered.

Preface ix

Beginning with Chapter 8, the book focuses on applications of assembly lan-
guage. Concepts are implemented by writing external subroutines that are
used extensively in applications.

Chapter 8 discusses arithmetic routines. Extended 64-bit operations are in-
cluded along with BCD numbers. An optional section on floating-point num-
bers is included.

Chapter 9 includes a variety of topics on string handling. A string handling
library is developed. Data conversion for VO transfer is introduced along with
a discussion of data encryption.

Chaprer 10 covers selected topics in the high-level language run-time environ-
ment. The use of LINK/UNLK for local variables is a major topic. Also included
is a discussion of recursion, reentrant code, and position independent code.
Sets and matrices are implemented to model high-level language code. This
material could be used to supplement a course in programming languages.

Chapter 11 selects classical topics from data structures including stacks, queues,
linked lists, and trees. Emphasis is given to the code generated by most com-
pilers to implement data structures.

Chapters 12 through 14 apply to a course in systems programming. Topics
covered in these chapters include /O programming, exception processing,
and peripheral device interrupts.

Chapter 12 treats I/O programming on a stand-alone system. The programming
details and hardware concepts necessary to deal with an ACIA, timer, and PIA
are discussed. A terminal VO package is fully developed.

Chapter 13 introduces exception processing. The MC68000 exceptions are de-
fined and then applied in a series of test programs that include sample service
routines. A complete program to perform single stepping of a program run-
ning in user mode is presented.

Chapter 14 completes the discussion of exception processing with a study of
interrupt processing, A serial driver with flow control and IO buffering is im-
plemented. The concept of process switching introduces the topic of concur-
rent programming and the resulting problems in mutual exclusion.

Chapter Ordering

Chapters 1 through 7 cover the basic topics of assembly language program-
ming. These concepts are integral to an understanding of the book. Except for
the introduction of MC68000 instructions, Chapters 8 through 13 may be

Preface

covered independently. Chapter 14 requires a complete reading of Chapters 12
and 13. Chapters 3, 8, and 14 also contain optional special topic sections, which
have been marked with an asterisk (*). These sections may be skipped if desired.

Support Material

The M68000 Family Resident Structured Assembler Reference Manual defines
the assembly language syntax used in this book. It may be obtained from
Motorola Semiconductor Products Inc.

A complete 68020 assembler written in C and running under 4.2BSD or
System V UNIX is available at a nominal cost from the authors. A modification
of the codefile generation module is required to run the assembler on another
system.

A Macintosh supplement is available which contains page-by-page differ-
ences for users of the Apple Macintosh computer and a discussion of the Mac
programming environment, including graphics and sound.* It features a library
of /O routines and many example programs (disk available from the supple-
ment’s author). In addition, a complete set of the text programs translated for
the Mac is available on disk (also from the supplement’s author; see order in-
formation in the Mac supplement and Instructor’s Guide).

An Instructor’s Guide containing teaching tips, sample tests, transparency
masters, and answers to most exercises is available from the publisher. Also
included is order information for a floppy disk or a tape listing of programs
and subroutines contained in the text.

Acknowledgments

The authors have been supported by friends, students, and colleagues in the
preparation of the book. No one has been more significant than our editor,
Karin Ellison, who shared our enthusiasm for the project and worked tirelessly
to provide resources and key industry and university contacts,

Greg Winters of Gasboy Development, Kirkland, Washington, has been a
valuable technical consultant for the text. He wrote a complete 68020 assem-
bler for our course and made appropriate modifications when requested. As
noted previously, this assembler may be purchased from the authors.

Our students lived through multiple versions of the book. Their class test-
ing of material, comments, and blank stares gave us important feedback.

Our reviewers were invaluable in assisting us in the final product. As crit-
ics and supporters of our work, they provided detailed comments on both the
content and pedagogical approach. Most comments were gladly included in
the last revision. We express special thanks to Jack Boudreau of Harvard Uni-
versity. His work motivated us to ask him to write the Macintosh supplement.

* Macintosh is a trademark of Apple Computer, Inc.

Preface Xi

Others offering very special assistance include Steve Eisenbarth, Baylor Univer-
sity; Jan Harrington, Bentley College; Vincent Manis, University of British
Columbia; and Herb Nyser, DeAnza College. The assistance of early reviewers,
including James Brand, University of Akron; George Brown, Rochester Institute
of Technology; Michael Hennessy, University of Oregon; David Lingle, State
University of New York at Stony Brook; John T. O’Donnell, Indiana University;
and David Rossiter, Cornell University, helped structure the book.

We appreciate the work of the production staff at D. C. Heath, especially
Jill Hobbs.

Motorola Semiconductor has been most cooperative in providing technical
documentation. Our special thanks to Quelo, Inc. in Seattle, Washington, for
providing a MC68020 cross assembler used to test the code presented in
Appendix E.

William Ford
William Topp

1
Infroduction

2
Representation
of Data

Contents

1.1 Computers and Computer Languages 2
1.1.1 High-Level Languages 2
1.1.2 Machine Language 3
1.1.3 Assembly Language 4
1.2 Why Study Assembly Language? 5
1.3 The Motorola 68000 Microprocessor Family 6
Exercises 7

2.1 Number Systems 9
2.1.1 Binary Numbers 9
2.1.2 Binary-Decimal Conversion 10
2.1.3 Hexadecimal Numbers 11
2.1.4 Binary-Hex Conversion 12
2.2 Binary-Hex Addition and Subtraction 14
2.3 Fixed Length Binary Numbers 15
2.3.1 Odometer Numbers 17
2.3.2 Negative Odometer Numbers 19
2.3.3 Two’s Complement Binary Numbers 20
2.3.4 A Summary of Two's Complement Numbers
2.3.5 Two’s Complement Hex Numbers 23
2.4 Two's Complement Addition and Subtraction 24
2.5 Overflow 25
2.5.1 Signed Overflow 26
2.5.2 Unsigned Overflow 27
2.5.3 Sign Extension of Numbers 28
2.6 Representing Character Data 30
2.6.1 ASCII Codes 30
2.6.2 Control Characters 31
2.7 Logical Operations 32
Exercises 34

xiii

Xiv

3

Machine
Organization
and
Programming

4

Assembly
Language
Programming

Contents

31

3.2
33

3.4

3.5

3.6

4.1

4.2

4.3

4.4
4.5

The Basic Structure of a Computer
3.1.1 Main Memory
3.1.2 Registers

3.1.3 Arithmetic Logic Unit

39

3.1.4 Control Unit
3.1.5 Input/Output Units
3.1.6 The Bus
Memory Addressing

Data Organization
3.3.1 Data Organization in Memory
MC68000 Registers

43

38

40

43

46

48

3.4.1 The Data Registers

3.4.2 The Address Registers

Basic Machine Instructions
3.5.1 Sample Instructions
3.5.2 A Machine Code Sequence

3.5.3 Decoding Machine Language Instructions

40

40

48
49
51
53

The Instruction Execution Cycle

3.6.1 Instruction Prefetch*

3.6.2 Instruction Timing

Exercises

Program Structure
4.1.1 MC68000 Assembler Program: Global View
4.1.2 MC68000 Assembler Program: Local View

4.1.3 Storage Allocation Directives

64

70

62
64

Assembling and Running Programs
4.2.1 The Run-Time Environment
Introduction to Addressing Modes

4.3.1 Absolute and Immediate Addressing Modes

38

46

56

59

75

77
79
82

4.3.2 Register-Direct Addressing Modes

4.3.3 Address Register Instructions

4.3.4 Indirect Addressing
4.3.5 Hex Input and Qutput Routines
4.3.6 MC68000 Character Input and Output Routines
4.3.7 Logical Operations

Errors in the Programming Process

88

94

Hand-Translation of Instructions

Exercises

102

86

96
100

84

90

58

72
73

82

91

Contents

5

Introduction 5.1 The Condition Code Register 109
fo anching 5.1.1 Subtraction and the Carry Bit 111
5.2 Simple Branch Instructions 112
5.2.1 The Test Instruction 114
5.2.2 The Negate Instruction 116
5.2.3 Arithmetic Shift Operations 118
5.3 The Signed Comparison Branches 121
5.3.1 Signed Branches and the CCR 123
5.4 Structured Programming 125
5.4.1 IF. THEN 125
5.4.2 IF..THEN. ELSE 126
5.4.3 WHILE..DO 127
5.4.4 LOOP. EXIT 127
5.4.5 The FOR Loop 128
5.4.6 The Quick Instructions 129
5.5 Unsigned Branches 131
5.5.1 Comparing Addresses 132
5.6 Additional Branch Instructions 134
5.6.1 Long Branches: The Jump Instruction 137
5.7 Branch Instruction Machine Code 138
5.7.1 Sample Code 139
5.7.2 Computing the Offset: An Algorithm 140
Exercises 141

6 6.1 Sequential Memory Access 146
Armys and 6.1.1 Sequential Access Addressing Modes 147
6.2 Indexed Memory Access 154
6.3 The PC Relative Modes 160
6.3.1 Specifying PC Relative Mode 163
6.3.2 The EQU Directive 165
6.3.3 Addressing Categories 167
6.4 Application Programs 168
Exercises 173

Xvi

7
Subroutines

8
Arithmetic
on the 68000

Conterils

7.1

7.2

7.3

8.1

8.2

8.3

8.4

8.5

Subroutine Call and Return 179

7.1.1 The Stack Pointer 179

7.1.2 Calling a Subroutine 179

7.1.3 Return from Subroutine 182

7.1.4 Structure of a Subroutine 183

7.1.5 The MOVEM Instruction 183

7.1.6 Demonstration Programs 187

Parameter Passing 190

7.2.1 Using Program Memory 190

7.2.2 Passing Parameters on the Stack 194
7.2.3 PEA—The Call by Reference Instruction 196
Demonstration Programs 197

7.3.1 Printing Registers— RTR Instruction 199
7.3.2 Parameter Passing with Functions 202
7.3.3 External Subroutines 204

Exercises 206

More MC68000 Arithmetic Instructions 212
8.1.1 The Logical Shift Instructions 212

8.1.2 Hardware Multiplication and Division = 214
Extended Arithmetic: Additive Operations 219
8.2.1 Extended Addition 219

8.2.2 Extended Subtraction — 222

8.2.3 Extended Negation 223

Extended Arithmetic: Multiplicative Operations 227
8.3.1 Extended Shifts 227

8.3.2 Extended Multiplication =~ 232

8.3.3 Extended Division = 235

Decimal Arithmetic 237

8.4.1 BCD Digits 238

8.4.2 Internal BCD Representation 238

8.4.3 MCG8000 BCD Instructions 240

8.4.4 BCD Routines 242

Floating-Point Numbers* 246

8.5.1 Representation of Floating-Point Numbers 247
8.5.2 Floating-Point Internal Format 248

8.5.3 Floating-Point External Format 250

8.5.4 Floating-Point Addition/Subtraction 255
8.5.5 Floating-Point Multiplication 258

8.5.6 Floating-Point Test Program 260
Exercises 263

Conterits

9

Bit and Byte

Operations

10
High-Level
Language
Run-Time
Environment

9.1

9.2
9'3

9.4

9.5

10.1
10.2

10'3

10.4

10.5

10.6

10.7

Dealing with ASCII Codes 267

9.1.1 The Terminal Keyboard 268
9.1.2 Bit Manipulation Instructions 269
9.1.3 Parity Checks 270

String Formats 272

String Routines 273

9.3.1 O Routines 274

9.3.2 String Functions 275

9.3.3 String Operators 278

9.3.4 Demonstration Program: File Names 280
External Format Conversion 285

9.4.1 Exploring the Issues 285

9.4.2 Format Conversion: Input 286
9.4.3 Format Conversion: Output 290
Internal Conversion 294

9.5.1 Binary/BCD Conversions 294
9.5.2 Data Encryption 296

Exercises 297

The CASE Statement: Jump Tables 302

Sets 305

10.2.1 Demonstration Program: Sets 306
Matrices 307

10.3.1 Matrix Access Functions 308

10.3.2 Matrix Code 310

Stack Frames 311

10.4.1 The LINK and UNLK Instructions 313
10.4.2 Subroutines with a Variable Number of Arguments
10.4.3 Debuggers 319

Recursion 320

10.5.1 Tower of Hanoi 325

Reentrant Code 330

10.6.1 Conditions for Reentrant Code 331
Position-Independent Code 334

10.7.1 Base Relative Addressing 337
Exercises 338

xvii

317

Xviii Contenis

11

Dafa 11.1 Stacks 344
Structures 11.2 Queues 347
' 11.2.1 Queue Operations 348
11.3 Linked Lists 353
11.3.1 The Node Allocation Function: NEW 354
11.3.2 Inserting Nodes 356
11.3.3 Demonstration Program 358
11.4 Binary Trees 360
11.4.1 Binary Tree Scan Algorithms 361
11.4.2 Demonstration Program 364
11.5 Hashing 366
11.5.1 Hashing Functions 368
11.5.2 Overflow Handling Strategies 369
Exercises 373

12

1/0 12.1 VO Peripheral Interfaces 376
Progrumming 12.12.1 Memory-Mapped /O Access 377
12.1.2 Educational Computer Board 378
12.1.3 Running Programs on the ECB System 378
12.2 The MC6850 ACIA 380
12.2.1 Serial Transmission 380
12,2.2 RS232 Control Lines 382
12.2.3 MC6850 Registers 384
12.2.4 Programming the MCG850 ACIA 387
12.2,5 A Terminal I/O Package 387
12.2.6 Echoing Characters 395
12.2.7 ECB Transparent Mode 397
12,3 Timer 399
12,3.1 Timer Registers 400
12.3.2 Initializing the Counter Preload Register 401
12.3.3 Timer Control Register ~ 403
12.3.4 Timer Status Register 404
12.3.5 Programming the Timer 405
12.3.6 Process Switching 413

Contents

13
Exception
Processing

14
Peripheral
Device
Interrupts

124

131
13.2

13.3

134

13.5
13.6

13.7

14.1

14.2

14.3

Xix

Communicating with a Parallel Printer 416
12.4.1 Printer Port Interface 416

12.4.2 PI/T Registers 418

12.4.3 Programming the Printer Port 420
12.4.4 Demonstration Program 422
Exercises 424

CPU States 428

The Status Register and System Stack 429
13.2.1 The Status Register 429

13.2.2 Status Register Access 430

13.2.3 The Supervisor and User Stack Pointers 432
The Exception Processing Cycle 433
System Initialization — 437

13.4.1 System Initialization: Hardware 439
13.4.2 System Initialization: Software 440
The Trace Exception 442

Program Code Causing Exceptions 443
13.6.1 The TRAP Exception 443

13.6.2 Unimplemented Instruction 447
13.6.3 Zero Divide and Trap-on-Overflow Exceptions 448
13.6.4 The CHK Exception 450

13.6.5 Demonstration Program 451

Error Conditions Causing Exceptions 455
13.7.1 Illegal Instruction 456

13.7.2 Privilege Violation Exception 459
13.7.3 Address Error 459

13.7.4 Bus Error 463

Exercises 464

Priority Interrupts 470

14.1.1 The Interrupt Acknowledge Cycle 472

MC6850 ACIA Interrupts 474

14.2.1 Initializing the ACIA Registers 474

14.2.2 Demonstration Program: Transparent Mode 475
14.2.3 ACIA Receive/Transmit Interrupts* 477
MC68230 PUT Interrupts* 483

14.3.1 PUT Interrupt Registers 483

14.3.2 Demonstration Program: PRINTSTRING 484

XX Contents

14.4 The Timer Interrupt 487
14.4.1 Sample Timer Program 488

14.5 Multiple Exceptions 490

14.6 An Interrupt-Driven Serial Driver 494

14.7 Concurrent Programming 504
14.7.1 Mutual Exclusion with the MC68000 S14
Exercises 517

Appendix A Condition Codes Computation Al
Appendix B Instruction Set Details A5

Appendix C Instruction Format Summary — Al34
Appendix D MCG68000 Instruction Execution Times Al51
Appendix E The MC68020 32-Bit Microprocessor A160
Appendix F Utility Programs ~ A232

Appendix G ASCII Code Chart ~ A242

Answers to Selected Exercises A243

Index A261

Introduction

To most users a computer is a problem-solving tool that is regarded
as a “black box.” Packaged software and high-level languages provide
simple access to the power of the computer without requiring special
understanding of its internal architecture. As with any sophisticated
device, some technical understanding of the computer provides control
and more effective use of the system. Studying assembly language pro-
gramming is a good way to gain this understanding.

This text introduces the assembly language of a popular 16-bit mi-
croprocessor, the Motorola MC68000. Along with the language, the text
examines the basic hardware of the processor, its instruction set, and its
access to peripheral devices. In the process, the reader will gain a bet-
ter understanding of high-level-language constructs and the run-time
environment. This study is detailed and requires patience, but the re-
wards will be a better understanding and appreciation of a computer
and its applications. :

A computer is a high-speed device that performs arithmetic opera-
tions and symbol manipulation through a set of machine-dependent in-
structions. The heart of a computer is the central processing unit (CPU)
that contains the circuitry to define and execute a set of machine in-
structions (see Figure 1.1).

This text describes a computer system equipped with a Motorola
MC68000 processor, a terminal, and printer for input/output (¥O) ac-
cess (see Figure 1.2). The primary focus of the text is the development
of MC68000 assembly language, but the principles of machine architec-
ture, the execution of code written in common programming languages
(such as Pascal), and the writing of programs that deal directly with the
hardware in a system are also covered.

