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This issue has provided a broad community of economists, psychologists,
philosophers, biologists, anthropologists, and others with a sense of com-
mon purpose so strong that traditional interdisciplinary boundaries have
begun to melt away.
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1 Introduction

1.1 Introduction

This book is about the theory of learning in games. Most of non-
cooperative game theory has focused on equilibrium in games, especially
Nash equilibrium and its refinements such as perfection. This raises the
question of when and why we might expect that observed play in a game
will correspond to one of these equilibria. One traditional explanation of
equilibrium is that it results from analysis and introspection by the players
in a situation where the rules of the game, the rationality of the players,
and the players’ payoff functions are all common knowledge. Both con-
ceptually and empirically, these theories have many problems.!

This book develops the alternative explanation that equilibrium arises
as the long-run outcome of a process in which less than fully rational
players grope for optimality over time. The models we will discuss serve
to provide a foundation for equilibrium theory. This is not to say that
learning models provide foundations for all of the equilibrium concepts in
the literature, nor does it argue for the use of Nash equilibrium in every
situation; indeed, in some cases most learning models do not lead to any
equilibrium concept beyond the very weak notion of rationalizability.

1. First, a major conceptual problem occurs when there are multiple equilibria, for in the
absence of an explanation of how players come to expect the same equilibrium, their play
need not correspond to any equilibrium at all. While it is possible that players coordinate
their expectations using a common selection procedure such as Harsanyi and Selten’s (1988)
tracing procedure, left unexplained is how such a procedure comes to be common knowl-
edge. Second, we doubt that the hypothesis of exact common knowledge of payoffs and
rationality apply to many games, and relaxing this to an assumption of almost common
knowledge yields much weaker conclusions. (See, for example, Dekel and Fudenberg 1990
and Borgers 1994.) Third, equilibrium theory does a poor job explaining play in early rounds
of most experiments, although it does much better in later rounds. This shift from non-
equilibrium to equilibrium play is difficult to reconcile with a purely introspective theory.



2 Chapter 1

Nevertheless, learning models can suggest useful ways to evaluate and
modify the traditional equilibrium concepts. Learning models lead to re-
finements of Nash equilibrium; for example, considerations of the long run
stochastic properties of the learning process suggest that risk dominant
equilibria will be observed in some games. They lead also to descriptions
of long-run behavior weaker than Nash equilibrium; for example, consid-
erations of the inability of players in extensive form games to observe
how opponents would have responded to events that did not occur sug-
gests that self-confirming equilibria that are not Nash may be observed as
the long-run behavior in some games.

We should acknowledge that the learning processes we analyze need
not converge, and even when they do converge, the time needed for con-
vergence is in some cases quite long. One branch of the literature uses
these facts to argue that it may be difficult to reach equilibrium, especially
in the short run. We downplay this antiequilibrium argument for several
reasons. First, our impression is that there are some interesting economic
situations in which most of the participants seem to have a pretty good
idea of what to expect from day to day, perhaps because the social arrange-
ments and social norms that we observe reflect a process of thousands
of years of learning from the experiences of past generations. Second,
although there are interesting periods in which social norms change so
suddenly that they break down, such as during the transition from a con-
trolled economy to a market one, the dynamic learning models that have
been developed so far seem unlikely to provide much insight about the
medium-term behavior that will occur in these circumstances.?2 Third,
learning theories often have little to say in the short run, making pre-
dictions that are highly dependent on details of the learning process and
prior beliefs; the long-run predictions are generally more robust to the
specification of the model. Finally, from an empirical point of view, it is
difficult to gather enough data to test predictions about short-term fluctu-
ations along the adjustment path. For this reason we will focus primarily
on the long-run properties of the models we study. Learning theory does,
however, make some predictions about rates of convergence and behavior
in the medium run, and we will discuss these issues as well.

Even given the restriction to long-run analysis, there is a question of
the relative weight to be given to cases where behavior converges and

2. However, Boylan and El-Gamal (1993), Crawford (1995), Roth and Er’ev (1995), Er'ev and
Roth (1996), Nagel (1993), and Stahl (1994) use theoretical learning models to try to explain
data on short-term and medium-term play in game theory experiments.
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cases where it does not. We chose to emphasize the convergence results,
in part because they are sharper but also because we feel that these are the
cases where the behavior that is specified for the agents is most likely to
be a good description of how the agents will actually behave. Our argu-
ment here is that the learning models that have been studied so far do not
do full justice to the ability of people to recognize patterns of behavior
by others. Consequently, when learning models fail to converge, the be-
havior of the model’s individuals is typically quite naive; for example, the
players may ignore the fact that the model is locked in to a persistent
cycle. We suspect that if the cycles persist long enough, the agents will
eventually use more sophisticated inference rules that detect them; for this
reason we are not convinced that models of cycles in learning are useful
descriptions of actual behavior. However, this does not entirely justify
our focus on convergence results: As we discuss in chapter 8, more
sophisticated behavior may simply lead to more complicated cycles.

We find it useful to distinguish between two related but different kinds
of models that are used to model the processes by which players change
the strategies they are using to play a game. In our terminology a
“learning model” is any model that specifies the learning rules used by in-
dividual players and examines their interaction when the game (or games)
is played repeatedly. In particular, while Bayesian learning is certainly a
form of learning, and one that we will discuss, learning models can be far
less sophisticated and include, for example, stimulus-response models of
the type first studied by Bush and Mosteller in the 1950s and more
recently taken up by economists.> As will become clear in the course of
this book, our own views about learning models tend to favor those in
which the agents, while not necessarily fully rational, are nevertheless
somewhat sophisticated; we will frequently criticize learning models for
assuming that agents are more naive than we feel is plausible.

Individual-level models tend to be mathematically complex, especially
in models with a large population of players. Consequently there has also
been a great deal of work that makes assumptions directly on the be-
havior of the aggregate population. The basic assumption here is that
some unspecified process at the individual level leads the population as a
whole to adopt strategies that yield improved payoffs. The standard
practice is to call such models “evolutionary,” probably because the first
examples of such processes came from the field of evolutionary biology.

3. Examples include Cross (1983), and more recently the Borgers and Sarin (1995), Er’ev and
Roth (1996), and Roth and Er'ev (1995) papers discussed in chapter 3.



