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Preface

This book came out of a course I taught, twice, at the Australian Na-
tional University. I taught it first in the Fall of 2004, and then again,
because of interest from some students and colleagues, in the Fall of 2005.
The course was a one-semester affair, and the students were fourth-year
undergraduates.

Given that these were undergraduate students in their final year, this
could be one of the last few mathematics courses they would ever see.
They might well decide to pursue interests having nothing to do with
mathematics; they could, for all T know, choose to become doctors, or
lawyers, or bankers, or politicians. My task was to present to them an
overview of algebraic geometry. It would be premature to give them a
thorough grounding in the field; a broad, panoramic picture seemed far
more appropriate, and if possible the panorama should include glimpses
into a wide assortment of pretty vistas, into more specialized areas, each
of which is beautiful in its own right. I tried to cover interesting topics,
without delving into too much detail on any one of them.

The first order of business was to choose the subject matter for the
course. I had the option of teaching classical algebraic geometry; there
are several excellent textbooks to choose from, written specifically for
students at this level. But I wanted to teach modern algebraic geome-
try, and there really are no undergraduate treatments of the field. The
consensus seems to be that this topic is beyond undergraduates, suitable
only for courses at the graduate level.

So here I was, soon to face a class of math majors in their final year,
and I had decided to teach them some modern algebraic geometry, even
though there was no available textbook. I had to assemble the material
myself. In so doing, I had to take into account the mathematics the stu-
dents are likely to have seen in their first three years at university. Usu-
ally this would include some background on point-set topology, maybe a

ix



X Preface

course on analytic functions in one complex variable, possibly a course
on functional analysis, which would probably cover the Hahn-Banach
Theorem and the Open Mapping Theorem, possibly a little about man-
ifolds, maybe a rudimentary course on algebraic topology, and perhaps
some basic algebra—groups, rings, fields, modules, if I were lucky maybe
even the Hilbert Basis Theorem and the Nullstellensatz.

Algebraic geometry is a meeting place in which all the previous strands
of knowledge magically converge; why not present it this way? This
was my guiding philosophy in planning the course, and later the book.
Bearing in mind that only an unusual math major will have seen every
one of the topics listed, I tried not to lean too heavily on any one of
them. But strong math majors should have met a large portion of these
subjects, and my hope was that I was building on familiar ground.

Whenever we teach a course, especially a wide-ranging survey course,
there will be the keen students, the enthusiastic ones who want to go a
little beyond the discussions presented in class, who might even wish to
pursue the subject further some day. This book was written for them.
It covers the same topics treated in the course, and it tries to remain
at the same level, demanding from the reader no prerequisites beyond
what was assumed in my course. But the book has far more detail than
the course, with many of the proofs included. I mention this because, if
you decide to use the book to teach a course, and the course you have in
mind is to be modeled approximately on the one I gave, then it would
be a mistake to follow the book slavishly. In your lectures you will be
presenting only selected portions of the book; you will have to pick and
choose, deciding which parts of the material to present, and what to
leave out.

I do not presume to make these decisions for you; the author has no
authority to direct the reader how to use a book. As a rough guide let
me, nevertheless, tell you what I did. Perhaps even more helpful: let
me tell you what I would do if T come to teach the course again. The
Introduction is worth presenting, just to give the students an overview;
I spent the first class doing that. Chapter 2 rated two classes; one
for an overview, and one for the proof of Theorem 2.3.2. I spent a
few weeks on Chapter 3; it contains the definition of schemes, and a
thorough understanding is worthwhile. In the case of Chapters 4, 5 and
6, I stated the results and mostly skipped the proofs. The results are
about the complex topology and the sheaf of holomorphic functions on
schemes of finite type over C. Everything is plausible enough and, in
my opinion, sketchy arguments sufficed. Now that the book is available,
the need to cover this material thoroughly is even less than it was when
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I was teaching the course; the students would be able fill in the details
as carefully as they want, of any of the parts which you choose to omit
in class.

I spent most of the semester on Chapters 7 and 8. Chapter 7 intro-
duces coherent sheaves, both algebraic and analytic, while Chapter 8
gives a little window on geometric invariant theory, and uses it to study
the properties of projective space. My feeling was that these were topics
well worth treating a little more completely.

By the time you have finished with Chapter 8 you should have a
reasonable idea how much time you have left. Based on that, I would
decide how much of Chapter 9 to cover; most of the chapter can be
omitted. Time permitting, I would present a little of the material on
representations of linear algebraic groups, treat the special case of the
multiplicative group G,,, and present the proof of Hilbert’s theorem on
the finite generation of rings of invariants. Just how much is presented,
and how many of the proofs, would very much depend on how pressed I
were for time. The chapter is very skippable.

If the ground is thoroughly prepared, then Chapter 10 should not
demand much time. It is the punchline of the course and is worth doing
well. I do have to admit, however, that in both of my attempts to teach
the material I skipped the computational parts; I stated, without proof,
the results of Lemma 10.6.4. This meant, among other things, that I
basically skipped all of Section 10.6. This is a much more significant
omission than it may seem; if you choose to dispense with the proofs of
Section 10.6 then you can also leave out all the preparatory material,
which takes up several earlier sections in the book. For example there
would be no compelling need to say much about the Fréchet topology,
of the vector space of sections of a coherent analytic sheaf. And the
various computations, of what I tend to refer to as the “elementary” or
“concrete” examples, all become optional. My rough estimate is that it
renders about 15% of the book dispensable.

Let me explain that I did not pull this figure out of thin air; the book
used to be approximately this much shorter. At the suggestion of the
reviewer I expanded the book to include Section 10.6, together with all
the preparatory material. I am grateful to the reviewer for proposing this
improvement; it certainly makes the treatment far more self-contained.

The first draft of the book was completed in 2005. Then, in 2006, 1
had an unusual fourth-year, undegraduate student. Michael Carmody
wanted to do his senior thesis with me, but he told me, in advance,
that this would be his last mathematical year. He had decided that
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his passion was for philosophy. This meant that, after his fourth year
finished, his intention was to start a PhD in philosophy.

This made him another student ideal for this type of book. Giving
him a solid grounding in the field, the sort that would prepare him for
research, was not a priority; it seemed far more appropriate to present
him with a panoramic view. I therefore gave him the manuscript of this
book to read. He took about four months to get through it. We met
every couple of weeks. At these meetings he would present me with long
lists of misprints, as well as with some points in the mathematics which
he found unclear. I took his comments extremely seriously; whenever he
found anything confusing, T would rewrite the text to elucidate the point.
I owe him a tremendous debt for his help. Anyway, I was pleased that
he managed to plough through the book, almost unaided, in about four
months. It meant that the book is accessible to its intended audience.

Before I end the Preface I should thank the many people whose help
has been invaluable. Let me begin with the students who took the
courses; I have already thanked Michael Carmody, but special mention
goes also to Joanne Hall, Jason Lo and Kester Tong, whose questions
helped inform what I wrote. I would like to thank my colleagues Eu-
gene Lerman and Shahar Mendelson for making me teach the course
a second time, only one year after the first, and for many comments
on the manuscript as it was being written. I am grateful also to my
(graduate) student Daniel Murfet, for pointing out several notational
inconsistencies. Thanks go also to Boris Chorny, Jonathan Manton and
Greg Stevenson, who kept sending me corrections, as well as ideas for
more substantial improvements, right up until the very last minute. I
wish to thank the anonymous reviewer for some wonderful suggestions,
and my editor, Diana Gillooly, for her patient help and good humor.
Speaking of patience and good humor: I would like offer my warmest
thanks to my family, for putting up with me during the months when
this manuscript was being written. Thank you Terry (my wife), and
Ted, Joe and Jeremy (our sons). Jeremy was always ready with a good
Jjoke. For example: when Cambridge University Press and I were in the
process of choosing a title for the book, it was Jeremy who finally said
that, if we really wanted the book to sell, then we should name it Harry
Potter and Algebraic Geometry. Diana Gillooly improved this to Harry
Potter and the Proof of GAGA, which sounds more mysterious. And
Jeremy also proposed that, if I wanted to lighten the mood by having a
Jjoke somewhere in the book, it could start out with: “Three algebraic
varieties walk into a bar...”

Enough of the Preface; let the Quidditch match begin.
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1

Introduction

Algebraic geometry is an old subject. There are many introductory
books about it, at various levels. There are even some introductory
texts which, like the present one, are addressed primarily to advanced
undergraduates or beginning graduate students. The idea of these ele-
mentary introductions is to sell the subject. We do not yet attempt to
train people in the field, only to convince them that it is fascinating and
well worth the effort required to learn it.

There is no doubt that learning algebraic geometry entails substantial
effort. The modern way of approaching the subject makes use of sev-
eral technical machines, and a well-trained algebraic geometer needs to
master at least one of these machines, preferably more than one. The
very elementary introductions to the field try to avoid the machinery.
They are generally very classical, using mathematics from the nineteenth
century and the first half of the twentieth, before algebraic geometry
underwent the Industrial Revolution and became so mechanized. The
classical introductory books talk a great deal about curves, using the
Riemann-Roch theorem to study them. They also might deal a little
with simple singularities and their resolutions.

There are also many excellent books which do a thorough job teaching
the foundations. These are for the serious graduate student, who already
knows that this is the subject in which she wants to write her PhD. The
current book is addressed to the uncertain graduate student, who is
trying to decide if she really wants to spend the next four years of her
life learning how to use sheaf cohomology to solve problems in algebraic
geometry. The idea of the book is not to avoid the machinery, but rather
to give an impressive illustration of its power.

The current book goes right for the mechanical apparatus, and tries
to persuade the beginner of its value. We chose a theorem whose proof
needs the machine. We chose an interesting, powerful theorem, and
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present a proof of it. Since we want to impress the reader with the value
of the machine we explain the proof fairly completely, developing along
the way the parts of the machine needed in the proof. But, bearing in
mind that we want the book to be accessible to beginners, we keep the
mechanical parts minimal. We only develop those parts of the machine
which are unavoidable in the proof.

Let us therefore immediately make our disclaimer: this is not the right
book for a serious graduate student, preparing herself for a research ca-
reer in algebraic geometry. The treatment we give here, of the founda-
tions of the subject, is much too patchy and has far too many glaring
holes. For a thorough introduction to the foundations the student is
referred to the many excellent books pitched at a higher level.

The theorem we chose to prove in this book is Serre’s GAGA theorem.
The GAGA stands for Géométrie algébrique et géométrie analytique, the
title of [7], the 1956 paper by Jean-Pierre Serre containing the proof. In
the remainder of the introduction we will try to explain what the theorem
is about, and why it is surprising and important. There is, however,
a problem: we do not yet have the language to state the theorem in
the generality in which Serre proved it. Instead we will state three
theorems, all of which are essentially immediate consequences of Serre’s
GAGA. We can state the consequences already, and will try to explain
their importance. As the book progresses we will develop the language
necessary for the more general theorem, and most of the machinery
needed in the proof. We should make one more disclaimer: there will
be some small parts of the proof we will not fully explain. We will give
references and say something about the ideas.

Before we proceed any further we should say something about the
prerequisites for reading the book. Let us start with the algebraic pre-
requisites: the reader is assumed to know what are commutative rings
and ideals, what are ring homomorphisms, and the relation between ide-
als and kernels of ring homomorphisms; in particular given a ring R and
an ideal I C R the reader should know how to form the ring homo-
morphism R — R/I. The reader should also know what it means for
an ideal to be either prime or maximal. Given a field k, our most im-
portant example of a ring will be the polynomial ring Flzy; Toy .. . i, ];
the reader is assumed to know this ring. The reader should also know
about modules, homomorphisms between modules and exact sequences
of modules. When we need anything more sophisticated we will state
the results we need and give references. We made sure to appeal only to
facts in commutative algebra which are contained in Atiyah and Mac-
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donald’s book [1], and the vast majority of what we need may be found
in the first few chapters.

We also assume a basic familiarity with homological algebra. Atiyah
and Macdonald’s book [1] does not cover this, but there are many excel-
lent accounts of the subject; see for example Weibel [9]. In most of the
book we use very little; we assume a familiarity with exact sequences,
an acquaintance with the 5-lemma, and an ability to do simple diagram
chasing to prove sequences exact. Towards the end of the book the level
of sophistication goes up a notch; starting in Section 10.4 we will look
at the homology of chain complexes, we will appeal to the result that
homotopic maps of chain complexes induce equal maps in homology, and
we will rely on the fact that a short exact sequence of chain complexes
gives a long exact sequence in homology.

The reader is assumed to know some basic point-set topology; we will
freely refer to topological spaces, open and closed sets and continuous
maps. We expect the reader to know what a homeomorphism is. Given
a topological space X and a subset U, the reader should know what is
the subspace topology on U. Given a topological space X, a set Y and
surjective map X — Y, the reader should know how to form the quo-
tient topology on Y. We will also feel free to talk about connectedness
and compactness of topological spaces, and about Hausdorff spaces, and
we will assume the reader knows what all these concepts mean.

And finally, while it is not absolutely indispensable, it would help to
have seen at least one course on functions of one or more complex vari-
ables. We will freely refer to “holomorphic functions”, and occasionally
also to “meromorphic functions”. For a reader who has never met them
before let us briefly introduce them. Let U C C™ be an open set. A
holomorphic function on U is a function f: U — C so that, for every
point p € U, the Taylor series of the function f at the point p converges
near p to the function f. More formally this means that for every point
p € U there exists a real number § > 0 so that, on the ball of radius §
centered at p = (py,ps, - -.,D,), the function f is given by a convergent
power series

flz1,20,. .. 2,) = Z Qi iyg,onsiy, (21 —p1 )" (z—pa)2 - (2a—0 )" .
(i yig,eeeiy, JENT

This defines holomorphic functions. The ratio f/g of two holomorphic
functions f and g, where g does not vanish on any open subset of U, is
called a meromorphic function. Taken very literally it is not a function;
if f and g are holomorphic on U then f/g is only defined on the subset
of U where g does not vanish; in an abuse of language we say that f/g is
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meromorphic on U. In general, a meromorphic function h on U is only
assumed to be locally of the form f/g. That is, every point peUis
contained in a ball V' C U so that, on the ball V, there exist holomorphic
functions fy, and gy, # 0, and f,,/ gy agrees with the restriction to V of
Hs

1.1 Algebraic and analytic subspaces

Consider the closed subsets of C", the n—dimensional complex space.
There are many closed subsets. We are particularly interested in two
classes of closed subsets: the closed algebraic and the closed analytic
subspaces. Closed algebraic subspaces of C" are the closed sets on which
a finite number of polynomials vanish. Closed analytic subspaces are,
at least locally, the closed subsets on which finitely many holomorphic
functions vanish. Here are the definitions, given more precisely.

Definition 1.1.1. A closed subset X C C" is called a closed algebraic
subspace if there are finitely many polynomial functions on C", let us
say fi, fo,..., [, so that

X={zeC"|fi(x)=0 V1<i<r}.

The definition of analytic subspaces is slightly more delicate, being
local.

Definition 1.1.2. A closed subset X c C" is called a closed analytic
subspace if, for every point x € X, there exists an open neighborhood U
of x in C", and finitely many holomorphic functions fisforooos froon U,
so that

XNU={yeU]| fi(y)=0 V1<i<r}

Note that, in the definition of a closed analytic subset, we do not
require the existence of finitely many global holomorphic functions. The
definition is local. Furthermore it is immediate, from the definitions,
that any closed algebraic subspace of C™ must automatically be a closed
analytic subspace.

It is also very clear that there are many closed analytic subspaces of
C" which are not algebraic. The easiest is to consider the case n — 1.
If f # 0 is a polynomial function in one variable (that is a polynomial
function on C'), then the set of points {z € C' | f(x) = 0} is finite.
This just says that a polynomial in one variable has finitely many roots.
If X is a closed algebraic subset of C!, Definition 1.1.1 tells us that
there is a finite set of polynomial functions fisfay-ooy fry and X is the
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set of points p € C at which all the f; vanish. If the f, are all zero then
X = C!. Otherwise one of the f; must be non-zero, it vanishes only
at finitely many roots, and X is a subset of this finite set of roots. We
conclude that a closed algebraic subspace X C C! is either finite or is
equal to C!.

Now consider the subset X C C! given by

X = {x € C! | sin(z) = 0}.

Since sin(z) is a holomorphic function of z € C!, the set X is a closed
analytic subspace of C!. On the other hand we know that sin(z) vanishes
whenever z is a multiple of 7; even better, it vanishes no place else. That
is

X ={nr|neZ}

The set X is neither finite nor all of C!; it therefore is not algebraic.

In Definitions 1.1.1 and 1.1.2 we defined closed algebraic and analytic
subspaces of C™. For the definitions to make sense we needed to have
a clear notion of which functions on C™ are polynomial, and which are
holomorphic. In the definitions we can replace C" by any space P pro-
vided that P has, at least locally, well defined classes of polynomial and
holomorphic functions.

There is a family of such spaces, which come equipped with classes
of polynomial and holomorphic functions. In the first few chapters of
the book we will define them and talk a little about their elementary
properties. Such spaces are called schemes of finite type over C. For
the remainder of the introduction we ask the reader to accept, without
seeing the formal definitions, that schemes of finite type over C are some
topological spaces which have a well-defined notion of which functions
are polynomial and which are holomorphic. For every P, a scheme of
finite type over C, it makes sense to ask which closed subsets X C P
are algebraic subspaces, and which are analytic. The first important
corollary of GAGA is a theorem which predates Serre’s paper, a theorem
whose first proof was due to Chow:

Theorem 1.1.3. Let P be a scheme of finite type over C. Assume P
1s compact. Then any closed analytic subspace of P is algebraic.

We saw above that not all closed analytic subspaces of C" are alge-
braic. This does not contradict Theorem 1.1.3, since C™ is not compact.
One very interesting space to which Theorem 1.1.3 applies is the complex
projective space CP". T do not want to define CP" in the introduction;
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the readers who know it do not need such a definition, the readers who
do not yet know CP"™ will learn much about it in the rest of the book.

It turns out that the general statement of Theorem 1.1.3 is easy enough
to reduce to the special case where P = CP". There is a lemma due to
Chow that says an arbitrary compact P, which is a scheme of finite type
over C, admits a surjective, polynomial map 7 : X — P, with X a
closed algebraic subset of CP". Suppose Y C P is a closed analytic sub-
space. The special case of Theorem 1.1.3, where the space is CP", tells
us that 771V € X C CP" is closed and algebraic, and then fairly easy,
standard arguments imply that ¥ = 7(7~1Y)) is an algebraic subspace
of P. In this book we will confine ourselves to proving the special case
of Theorem 1.1.3 with P = CP"; the reader is expected to remember
that the more general fact is an easy consequence.

The next consequence of GAGA is about vector bundles. Given a
topological space P it is possible to define vector bundles on P. We
will not remind the reader of the definition of a vector bundle in the
introduction; there will be a great deal said about vector bundles, and
more general sheaves, later in the book. The only thing we want to
recall here is that one way to construct a vector bundle on P is in terms
of transition functions, as follows. Take an open cover {U;,i € .} of
the topological space P. For each pair U;,U; of open sets in the cover
give a function

v+ UyNU; — GL(n,C).

The functions @, are called the transition functions. If the p,; satisfy
the identities
ViP5 =1, PijPikPri = L

then the data is enough to specify a vector bundle on P. If P hap-
pens to be a scheme of finite type over C it makes sense to speak of
polynomial functions and it makes sense to speak of holomorphic func-
tions. It therefore makes sense to speak of vector bundles where the
transition functions are polynomial, and of vector bundles where the
transition functions are holomorphic. The ones with polynomial tran-
sition functions are called algebraic vector bundles, while the ones with
holomorphic transition functions are called analytic vector bundles. The
next theorem says

Theorem 1.1.4. Let P be a scheme of finite type over C. Assume
P is compact. Let ¥ be an analytic vector bundle on P. Then ¥ is
isomorphic to an algebraic vector bundle.

And the last theorem asserts
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Theorem 1.1.5. Let P be a scheme of finite type over C. Assume P
is compact. Let ¥ and ¥' be algebraic vector bundles on P, and let
@V — V' be an analytic map of vector bundles. Then ¢ is algebraic.

Now that we have stated the theorems we should explain their import.
To the extent that algebraic geometry concerns itself with schemes of
finite type over C, and with vector bundles over these schemes, we have
learnt that, as long as the scheme P is compact, we can study it either
by algebraic or by analytic methods. This is actually a very powerful,
important observation. There are theorems we know how to prove by
analytic methods without having an algebraic proof, and theorems for
which the only known proof is algebraic. It is a little strange: we end up
proving theorems in analysis using commutative algebra, and theorems
in algebra using partial differential equations.

The most beautiful, intriguing parts of mathematics are those which
lie at the confluence of different fields. Algebraic geometry is one of
these. To be a good algebraic geometer one needs to be aware of both
the algebraic and the analytic approaches to the subject. It also does
not hurt to know some number theory; we will not, in this book, describe
the interaction between algebraic geometry and number theory.

To be completely honest I should tell the reader that, even before
Serre, it was known that algebraic geometry was a subject which lay
at the intersection of algebra and analysis. Riemann knew this in the
nineteenth century. Let me very briefly remind the reader of the rela-
tion between the algebraic and analytic approaches to elliptic curves;
everything I say, in the remainder of the introduction, was known in the
nineteenth century. None of the remainder of the introduction will be
used in the rest of the book; the only purpose is to give the reader a
very old, explicit example of the way algebra and analysis interact in
algebraic geometry.

1.2 Elliptic curves

Let us give ourselves two complex numbers a and b, in general posi-
tion (meaning not real multiples of each other). We want to consider
functions periodic with the two periods a and b, that is

f(z+a) = f(z) = f(z+ D).

These functions go by the name of doubly periodic functions on C. Dou-
bly periodic functions are determined by their values on a fundamental
domain. There is a parallelogram in the complex plane with sides a and



