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Abstract

In the first half of this memoir we explore the interrelationships between the
abstract theory of limit operators (see e.g. the recent monographs of Rabinovich,
Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of
the generalised collectively compact operator theory introduced by Chandler-Wilde
and Zhang (2002). We build up to results obtained by applying this generalised
collectively compact operator theory to the set of limit operators of an operator A
(its operator spectrum). In the second half of this memoir we study bounded linear
operators on the generalised sequence space ¢?(Z",U), where p € [1,00] and U is
some complex Banach space. We make what seems to be a more complete study
than hitherto of the connections between Fredholmness, invertibility, invertibility
at infinity, and invertibility or injectivity of the set of limit operators, with some
emphasis on the case when the operator A is a locally compact perturbation of
the identity. Especially, we obtain stronger results than previously known for the
subtle limiting cases of p = 1 and oo. Our tools in this study are the results from
the first half of the memoir and an exploitation of the partial duality between ¢!
and ¢°° and its implications for bounded linear operators which are also contin-
uous with respect to the weaker topology (the strict topology) introduced in the
first half of the memoir. Results in this second half of the memoir include a new
proof that injectivity of all limit operators (the classic Favard condition) implies
invertibility for a general class of almost periodic operators, and characterisations
of invertibility at infinity and Fredholmness for operators in the so-called Wiener
algebra. In two final chapters our results are illustrated by and applied to concrete
examples. Firstly, we study the spectra and essential spectra of discrete Schrédinger
operators (both self-adjoint and non-self-adjoint), including operators with almost
periodic and random potentials. In the final chapter we apply our results to integral
operators on RV,

Received by the editor April 14, 2008.

Article electronically published on September 9, 2010; S 0065-9266(2010)00626-4.

2000 Mathematics Subject Classification. Primary 47A53, 47B07; Secondary 46N20, 46E40,
47B37, 47L80.

Key words and phrases. Infinite matrices, limit operators, collective compactness, Fredholm
operators, spectral theory.

Affiliation at time of publication for Simon Chandler-Wilde: Department of Mathematics,
University of Reading, Whiteknights, PO Box 220, Reading RG6 6 AX, United Kingdom.

Affiliation at time of publication for Marko Lindner: Fakultat Mathematik, TU Chemnitz,
D-09107 Chemnitz, Germany.

(©2010 American Mathematical Society



Contents

Chapter 1. Introduction
1.1. Overview
1.2. A Brief History
1.3. Summary and the Main New Results

Chapter 2. The Strict Topology

Chapter 3. Classes of Operators
3.1. Compactness and Collective Compactness on (Y, s)
3.2.  Algebraic Properties

Chapter 4. Notions of Operator Convergence

Chapter 5. Key Concepts and Results
5.1. Invertibility at Infinity and Fredholmness
5.2. A Generalised Collectively Compact Operator Theory
5.3. Limit Operators
5.4. Collective Compactness and the Operator Spectrum

Chapter 6. Operators on (P(ZV,U)
6.1. Periodic and Almost Periodic Operators
6.2. Dual Space Arguments
6.3. Band-Dominated Operators
6.4. Almost Periodic Band-Dominated Operators
6.5. The Wiener Algebra

Chapter 7. Discrete Schrodinger Operators
Chapter 8. A Class of Integral Operators
Chapter 9. Some Open Problems
Bibliography

Index

D UL = =

29
34
37

41

47
47
48
50
54

59
60
64
68
76
82

89
97
101
103
109



CHAPTER 1

Introduction

1.1. Overview

This memoir develops an abstract theory of limit operators and a generalised
collectively compact operator theory which can be used separately or together to
obtain information on the location in the complex plane of the spectrum, essential
spectrum, and pseudospectrum for large classes of linear operators arising in appli-
cations. We have in mind here differential, integral, pseudo-differential, difference,
and pseudo-difference operators, in particular operators of all these types on un-
bounded domains. This memoir also illustrates this general theory by developing,
in a more complete form than hitherto, a theory of the limit operator method in
one of its most concrete forms, as it applies to bounded linear operators on spaces
of sequences, where each component of the sequence takes values in some Banach
space. Finally, we apply this concrete form of the theory to the analysis of lattice
Schrodinger operators and to the study of integral operators on RV,

Let us give an idea of the methods and results that we will develop and the
problems that they enable us to study. Let Y = ¢P = ¢?(Z,C), for 1 < p < oo, de-
note the usual Banach space of complex-valued bilateral sequences z = (z(m))mez
for which the norm ||z|| is finite; here ||z|| := sup,, |z(m)|, in the case p = oo, while
2] == (X ez [2(m)[P)}/P for 1 < p < co. Let L(Y) denote the space of bounded
linear operators on Y, and suppose A € L(Y) is given by the rule

(1.1) Az(m) = amnz(n), mez,
nezZ

for some coefficients a,,, € C which we think of as elements of an infinite matrix
[A] = [@mn]m.nez associated with the operator A. Of course A, given by (1.1), is
only a bounded operator on Y under certain constraints on the entries a,,,. Simple
conditions that are sufficient to guarantee that A € L(Y), for 1 < p < oo, are to
require that the entries are uniformly bounded, i.e.

(1.2) Sup |amn| < o0,

and to require that, for some w > 0, amn = 0 if |m — n| > w. If these conditions
hold we say that [A] is a band matrix with band-width w and that A is a band
operator. We note that the tri-diagonal case w = 1, when A is termed a Jacobi
operator, is much-studied in the mathematical physics literature (e.g. [105, 59]).
This class includes, in particular, the one-dimensional discrete Schrodinger operator
for which a;m, =1 for |m —n| = 1.

It is well known (see Lemma 6.39 below and the surrounding remarks) that,
under these conditions on [A] (that [A] is a band matrix and (1.2) holds), the
spectrum of A, i.e. the set of A € C for which AI — A is not invertible as a member

1



2 1. INTRODUCTION

of the algebra L(Y), is independent of p. One of our main results in Section 6.5
implies that also the essential spectrum of A (by which we mean the set of A for
which A — A is not a Fredholm operator!) is independent of p. Moreover, we prove
that the essential spectrum is determined by the behaviour of A at infinity in the
following precise sense.

Let h = (h(j))jen C Z be a sequence tending to infinity for which it holds
that @, n(j)nth(;) approaches a limit @, , for every m,n € Z. (The existence
of many such sequences is ensured by the theorem of Bolzano-Weierstrass and a
diagonal argument.) Then we call the operator A, with matrix [Ax] = [@mn], &
limit operator of the operator A. Moreover, following e.g. [85], we call the set of
all limit operators of A the operator spectrum of A, which we denote by c°P(A).
In terms of these definitions our results imply that the essential spectrum of A
(which is independent of p € [1,00]) is the union of the spectra of the elements A
of the operator spectrum of A (again, each of these spectra is independent of p).
Moreover, this is also precisely the union of the point spectra (sets of eigenvalues)
of the limit operators Ay, in the case p = 0o, in symbols

(1.3)  spece(A) = Ua, eoor(a){A s Apz = Az has a bounded solution z # 0}.

This formula and other related results have implications for the spectrum of A. In
particular, if it happens that A € 0°P(A) (we call A self-similar in that case), then
it holds that

(1.4) spec(A) = specge(A) = Ua, oor(a){A : Anz = Az has a bounded solution}.

In the case A € 0°P(A) we do not have such a precise characterisation, but if we
construct B € L(Y) such that A € 0°P(B) (see e.g. [63, §3.8.2] for how to do this),
then it holds that

(1.5) spec(A) C specy(B) = Up, coor(B){A : Bax = Az has a bounded solution}.

A main aim of this memoir is to prove results of the above type which apply
in the simple setting just outlined, but also in the more general setting where
Y = ¢P(ZV,U) is a space of generalised sequences x = (x(m)),ez~, for some
N € N, taking values in some Banach space U. In this general setting the definition
(1.1) makes sense if we replace Z by Z" and understand each matrix entry a,,, as
an element of L(U). Such results are the concern of Chapter 6, and are applied
to discrete Schrédinger operators and to integral operators on RY in the final two
chapters.

This integral operator application in Chapter 8 will illustrate how operators
on RY can be studied via discretisation. To see how this simple idea works in the
case N =1, let G denote the isometric isomorphism which sends f € LP(R) to the
sequence = = (z(m))mez € £P(Z, LP[0,1]), where z(m) € L?[0,1] is given by

(z(m))(t) = f(m+t), meZ 0<t<]l1.

IThroughout we will say that a bounded linear operator C from Banach space X to Banach
space Y is: normally solvable if its range C'(X) is closed; semi-Fredholm if, additionally, either
a(C) := dim(ker C) or B(C) := dim(Y/C(X)) are finite; a ®4 operator if it is a semi-Fredholm
operator with a < oo, and a ®_ operator if it is semi-Fredholm with 8 < oo; Fredholm if it is
semi-Fredholm and both « and 3 are finite. If C' is semi-Fredholm then a(C) — B(C) is called the
index of C.
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Then the spectral properties of an integral operator K on LP(R), whose action is
given by

Kf(t):/Rk(s,t)f(s)ds, teR,

for some kernel function k, can be studied by considering its discretisation K :=
GKG™!. In turn K is determined by its matrix [K] = [Kmn|m.nez, With Kmn €
L(L?[0,1]) the integral operator given by

1
nmng(t)z/ E(m+s,n+t)g(s)ds, 0<t<1.
0

Let us also indicate how the results we will develop are relevant to differential
operators (and other non-zero order pseudo-differential operators). Consider the
first order linear differential operator L, which we can think of as an operator from
BC(R) to BC(R), defined by

Ly(t) =y'(t) +a(t)y(t), teR,

for some a € BC(R). (Here BC(R) C L*>(R) denotes the space of bounded
continuous functions on R and BC*(R) := {x € BC(R) : #’ € BC(R)}.) In
the case when a(s) = 1 it is easy to see that L is invertible. Specifically, denoting
L by L; in this case and defining C; : BC(R) — BC*(R) by

Cuy(t) = /R (s — t)y(s) ds,

where
() 1= e’, s <0,
1 0, otherwise,
it is easy to check by explicit calculation that L;C; = CijL; = | (the identity

operator). Thus the study of spectral properties of the differential operator L is
reduced, through the identity

(1.6) L=1L; +Mg_1 = Li(1 +K),

where M,_; denotes the operator of multiplication by the function a — 1, to the
study of spectral properties of the integral operator K = C;M,_1.

This procedure of reduction of a differential equation to an integral equation
applies much more generally; indeed the above example can be viewed as a special
case of a general reduction of study of a pseudo-differential operator of non-zero
order to one of zero order (see e.g. [85, §4.4.4]). One interesting and simple gener-
alisation is to the case where L is a matrix differential operator, a bounded operator
from (BC*(R))™ to (BC(R))M given by

Lz(t) = z'(t) + A(t)z(t), tER,

where A is an M x M matrix whose entries are in BC(R). Then, modifying the
above argument, the study of L can be reduced to the study of the matrix integral
operator K=CM,_;. Here M,_; is the operator of multiplication by the matrix
A — I (I the identity matrix) and C is the diagonal matrix whose entries are the
(scalar) integral operator C;.

Large parts of the generalisation to the case when the Banach space U is infinite-
dimensional apply only in the case when A = I+ K, where [ is the identity operator
and the entries of [K] = [Kmn]m.nez are collectively compact. (Where Z is some
index set, a family {A; : ¢ € Z} of linear operators on a Banach space U is said
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to be collectively compact if {A;x : i € Z, x € U, ||z|| < 1} is relatively compact
in U.) The first half of this memoir (Chapters 2-5) is devoted to developing an
abstract theory of limit operators, in which Y is a general Banach space and in
which the role of compactness and collective compactness ideas (in an appropriate
weak sense) play a prominent role. Specifically we combine the abstract theory
of limit operators as expounded recently in [85, Chapter 1] with the generalised
collectively compact operator theory developed in [26], building up in Chapter 5
to general results in the theory of limit operators whose power we illustrate in the
second half of the memoir, deriving results of the type (1.3).

Let us give a flavour of the general theory we expound in the first half of the
memoir. To do this it is helpful to first put the example we have introduced above
in more abstract notation. In the case Y = P = (P(Z,C), let Vi € L(Y), for k € Z,
denote the translation operator defined by

(1.7) Viz(m) =z(m —k), meZ.

Then it follows from our definition above that Ay is a limit operator of the operator
A defined by (1.1) if [V_p(;)AV}(;)] (the matrix representation of V_j;yAVj(;))
converges elementwise to [Ap] as j — oo. Let us introduce, moreover, P, € L(Y)
defined by

| z(m), |m|<n,
Pra(m) = { 0, otherwise.

C L(Y) and elements y € Y and B € L(Y)
converges strictly to y if the sequence (y,) is

Given sequences (y,) C Y and (B,

let us write y,, — y and say that (y,
bounded and

(1.8) | Pr(zn — 2)|| = 0 as n — oo,

)
)

for every m, and write B, 2 B if the sequence (B,) is bounded and
(1.9) |P(By — B)|| = 0 and ||(B,, — B)Py|| — 0 as n — oo,

for every m. Then Ay is a limit operator of A if
P
(1.10) V_hn)AVi(n) = An.

Defining, moreover, for b = (b(m))mez € €°°, the multiplication operator M, €
L(Y) by

(1.11) Mpz(m) = b(m)xz(m), m € Z,

we note that A is a band operator with band width w if and only if A has a
representation in the form

(1.12) A= D" My W,

k| <w

for some by € ¢>°. The set BO(Y) of band operators on Y is an algebra. The
Banach subalgebra of L(Y) that is the closure of BO(Y') in operator norm will be
called the algebra of band-dominated operators, will be denoted by BDO(Y'), and
will play a main role in the second half of the memoir, from Chapter 6 onwards.
In the general theory we present in the first five chapters, following [85] and
[26], Y becomes an arbitrary Banach space, the specific operators P, are replaced
by a a sequence P = (P,)22, of bounded linear operators on Y, satisfying con-
straints specified at the beginning of Chapter 2, the specific translation operators
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w

V.. are replaced by a more general discrete group of isometric isomorphisms, and
then the definitions (1.8), (1.9), and (1.10) are retained in essentially the same
form. The notion of compactness that proves important is with respect to what
we term (adapting the definition of Buck [12]) the strict topology on Y, a topology
in which 3 is the sequential convergence. Moreover, when we study operators of
the form A = I + K it is not compactness of K with respect to the strict topology
that we require (that K maps a neighbourhood of zero to a relatively compact
set), but a weaker notion, that K maps bounded sets to relatively compact sets,
operators having this property sometimes denoted Montel in the topological vector
space literature. (The notions ‘compact’ and ‘Montel’ coincide in normed spaces;
indeed this is also the case in metrisable topological vector spaces.)

In the remainder of this introductory chapter, building on the above short
overview and flavour of the memoir, we detail a history of the limit operator method
and compactness ideas applied in this context, with the aim of putting the current
memoir in the context of extensive previous developments in the study of differential
and pseudo-differential equations on unbounded domains; in this history, as we shall
see, a prominent role and motivating force has been the development of theories
for operators with almost periodic coefficients. In the last section we make a short,
but slightly more detailed summary of the contents of the chapters to come.

1.2. A Brief History

The work reported in this memoir has a number of historical roots. One we have
already mentioned is the paper by Buck [12] whose strict topology we adapt and use
throughout this memoir. A main thread is the development of limit operator ideas.
The historical development of this thread of research, which commences with the
study of differential equations with almost periodic solutions, can be traced through
the papers of Favard [37], Muhamadiev [71, 72, 73, 74|, Lange and Rabinovich
(55, 56, 57], culminating in more recent work of Rabinovich, Roch and Silber-
mann [83, 84, 85]. The other main historical thread, which has developed rather
independently but overlaps strongly, is the development of collectively compact op-
erator theory and generalisations of this theory, and its use to study well-posedness
and stability of approximation methods for integral and other operator equations.

Limit Operators. To our knowledge, the first appearance of limit operator
ideas is in a 1927 paper of Favard [37], who studied linear ordinary differential
equations with almost periodic coefficients. His paper deals with systems of ODEs
on the real line with almost periodic coefficients, taking the form

(1.13) T'(t) + At)z(t) = f(t), teR,

where the M x M matrix A(t) has entries that are almost periodic functions of
t and the function f is almost periodic. A standard characterisation of almost
periodicity is the following. Let T(A) := {V;A : s € R} denote the set of translates
of A (here (V;A)(t) = A(t — s)). Then the coefficients of A are almost periodic if
and only if 7(A) is relatively compact in the norm topology on BC(R). If A is
almost periodic, the compact set that is the closure of T(A) is often denoted H(A)
and called the hull of A. A main result in [37] is the following: if

(1.14) 2’ (t) + A(t)z(t) =0, teR,
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has only the trivial solution in BC*(R), for all A € H(A), and (1.13) has a solution
in BC'(R), then (1.13) has a solution that is almost periodic. (Since A € H(A),
this is the unique solution in BC!(R).)

Certain of the ideas and concepts that we use in this memoir are present already
in this first paper, for example the role in this concrete setting of the strict conver-
gence - and of compactness arguments. In particular, conditions analogous to the
requirement that (1.14) have no non-trivial bounded solutions for all A € H(A) will
play a strong role in this memoir. Conditions of this type are sometimes referred to
as Favard conditions (e.g. Shubin [102, 103], Kurbatov [52, 54], Chandler-Wilde
& Lindner [20]).

The first appearance of limit operators per se would seem to be in the work of
Muhamadiev {71, 72]. In [71] Muhamadiev develops Favard’s theory as follows.
In terms of the differential operator L : (BC'(R))M — (BC(R))M given by (1.6),
equation (1.13) is

Lz = f.

Under the same assumptions as Favard (that A is almost periodic and the Favard
condition holds) Muhamadiev proves that L : (BC}(R))M — (BC(R))M is a bi-
jection. Combining this result with that of Favard, it follows that L is also a
bijection from (APY(R))M to (AP(R))M. (Here AP(R) C BC(R) is the set of
almost periodic functions and AP!(R) = AP(R)N BC!(R).) New ideas which play
an important role in the proof of these results include a method of approximating
almost periodic by periodic functions and the fact that, if A is a periodic function,
then injectivity of L implies invertibility. (These ideas are taken up in the proofs
of Theorems 6.7 and 6.38 in Chapter 6.)

Muhamadiev also considers in the same paper the more general situation when
the entries of A are in the much larger set BUC(R) C BC(R) of bounded uniformly
continuous functions. A key property here (which follows from the Arzela-Ascoli
theorem and a diagonal argument) is that, if the sequence (t,) C R tends to infinity,
then A(-—t,) has a subsequence which is convergent to a limit A, uniformly on every
finite interval. (Cf. the concept of a rich operator introduced in §5.3.) Denoting by
Lim(A) the set of limit functions A obtained in this way, the following theorem is
stated: if (1.14) only has the trivial solution in BC'(R) for every A € Lim(A) then
L: (BCYR)M — (BC(R))M is a bijection for every A € Lim(A) (here L denotes
the operator defined by (1.6) with A replaced by A).

This is a key result in the development of limit operator theory and it is a
shame that [71] does not sketch what must be an interesting proof (we are told
only that it ‘is complicated’). Denoting by M4 the operator of multiplication by
A, the set {Mj : A € Lim(A)} is a set of limit operators of the operator M4, and
so the set {L: A € Lim(A)} is a set of limit operators of the operator L. Thus this
result takes the form: if each limit operator L is injective, specifically Lz = 0 has
no non-trivial bounded solution, then each limit operator is invertible. A result of
this form is a component in the proof of (1.3) and similar results in this memoir
(and see [20]). In the case that A is almost periodic it is an easy exercise to show
that H(A) = Lim(A), i.e. the hull of A coincides with the set of limit functions of A
(cf. Theorem 6.10). Thus this second theorem of Muhamadiev includes his result
for the case when A is almost periodic.

The first extension of results of this type to multidimensional problems is the
study of systems of partial differential equations in RY in [72]. Muhamadiev studies
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differential operators elliptic in the sense of Petrovskii with bounded uniformly
Hoélder continuous coefficients, specifically those operators L that are what he terms
recurrent, by which he means that o (L) = o°P(L), for all L € 6°°(L). Here o°(L)
is an appropriate version of the operator spectrum of L. Precisely, where A,(t),
for t € RV and for multi-indices p with |p| < 7, is the family of coefficients of the
operator L (here r is the order of the operator), the differential operator of the
same form L with coefficients A,(t) is a member of ¢°P(L) if there exists a sequence
tx — oo such that, for every p,

(1.15) Ap(t — ti) = Ap(t)

uniformly on compact subsets of RY as k — oc.

The main result he states is for the case where L is recurrent and is also, roughly
speaking, almost periodic with respect to the first N — 1 variables. His result takes
the form that if a Favard condition is satisfied (Lr = 0 has no non-trivial bounded
solutions for all L e o°P(L)) and if supplementary conditions are satisfied which
ensure that approximations to L with periodic coefficients have index zero as a
mapping between appropriate spaces of periodic functions, then L is invertible as
an operator between appropriate spaces of bounded Holder continuous functions.

Muhamadiev’s results apply in particular in the case when the coefficients of the
differential operator are almost periodic (an almost periodic function is recurrent
and its set of limit functions is its hull). Shubin, as part of a review of differential
(and pseudo-differential) operators with almost periodic solutions [103], gives a
detailed account of Muhamadiev’s theory, in the almost periodic scalar case (one
case where Muhamadiev’s supplementary conditions are satisfied), and of results
which relate invertibility in spaces of bounded functions to invertibility in L2(RY).
Specifically, his paper includes a proof, for a scalar elliptic differential operator L
with C*° almost periodic coefficients, that the following are equivalent: (i) that the
Favard condition holds; (ii) that L is invertible as an operator on BC*(RN); (iii)
that L is invertible as an operator on L?(RY) in an appropriate sense.

In [73] Muhamadiev continues the study of the same class of differential opera-
tors L on RV, elliptic in the sense of Petrovskii, but now, for some of his results, with
no constraints on behaviour of coefficients at infinity beyond boundedness, though
his main results require also uniform Hoélder continuity of all his coefficients. With
this constraint (which, inter alia, is a richness requirement in the sense of §5.3),
he studies Fredholmness (or Noethericity) of L considered as a bounded operator
between appropriate spaces of bounded Hélder continuous functions. It is in this
paper that a connection is first made between Fredholmness of an operator and
invertibility of its limit operators. The identical Favard condition to that in [72]
plays a key role. His main results are the following: (i) that L is ® iff the Favard
condition holds; (ii) that if L is ®_ then all the limit operators of L are surjective;
(iii) (his Theorem 2.5 and his remark on p. 899) that L is Fredholm iff all the limit
operators of L are invertible. We note further that his methods of argument in
the proof of his Theorem 2.1 show moreover that if L is Fredholm then the limit
operators of L are not only invertible but the inverses are also uniformly bounded,
ie.

=1
sup L7 < oc.
Leoor(L)
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Extensions of these results to give criteria for normal solvability and Fredholmness
of L as an operator on Sobolev spaces are made in [74].

In [73] Muhamadiev also, briefly, introduces what we can term a weak limit
operator. Uniform continuity of the coefficients A, (t) is required to ensure that
every sequence tx — 0o has a subsequence, which we denote again by t, such that
the limits (1.15) exist uniformly on compact subsets (cf. the definition of richness
in §5.3). The set of all limit operators defined by (1.15) where the convergence is
uniform on compact sets we have denoted by ¢°P(L). Muhamadiev notes that it
is enough to require that the coefficients A, be bounded (and measurable) for the
same richness property to hold but with convergence uniformly on compact sets
replaced? by weak convergence in L?(R™). In the case when the coefficients A,
are bounded, the set of limit operators defined by (1.15) where the convergence
is weak convergence in L?(RY) we will term the set of weak limit operators of L.
We note that this set coincides with o°?(L) in the case when each A, is uniformly
continuous. In [74] Muhamadiev gives criteria for Fredholmness of L on certain
function spaces in terms of invertibility of each of the weak limit operators of L.

Muhamadiev’s work has been a source of inspiration for the decades that fol-
lowed. For example, similar to his main results in [73] but much more recently,
A. and V. Volpert show that, for a rather general class of scalar elliptic partial
differential operators L on rather general unbounded domains and also for systems
of such, a Favard condition is equivalent to the &, property of L on appropriate
Holder {109, 110, 111] or Sobolev [108, 110, 111] spaces.

Lange and Rabinovich [55], inspired by and building on Muhamadiev’s paper
[73], carry the idea of (semi-)Fredholm studies by means of limit operators over to
the setting of operators on the discrete domain Z"~. They give sufficient and neces-
sary Fredholm criteria for the class BDO(Y') of band-dominated operators (as de-
fined after (1.12) and studied in more detail below in §6.3) acting on Y = ¢?(Z", C)
spaces. For 1 < p < oo, they show that such an operator is Fredholm iff all its
limit operators are invertible and if their inverses are uniformly bounded. Their
proof combines the limit operator arguments of Muhamadiev [73] with ideas of Si-
monenko and Kozak [49, 100, 101] for the construction of a Fredholm regulariser
of A by a clever assembly of local regularisers. Lange and Rabinovich are thereby
the first to completely characterise Fredholmness in terms of invertibility of limit
operators for the general class of band-dominated operators on ¢P(Z~, C). Before,
Simonenko [100, 101] was able to deal with the subclass of those operators whose
coeflicients (i.e. matrix diagonals) converge along rays at infinity; later Shteinberg
[104] was able to relax this requirement to a condition of slow oscillation at infinity.
Lange and Rabinovich require nothing but boundedness of the operator coeflicients.

The final section of [55] studies (semi-)Fredholmness of operators in the so-
called Wiener algebra W (see our §6.5) consisting of all operators

(1.16) A=Y My, Vi  with D [lbk]lec <00,
kezZN k

where by € (*°(Z",C) for every k € Z"V are the coefficients (or diagonals) of the

operator A and Vi and M,, are the shift and multiplication operators defined in

2We note that, since the coefficients Ap are bounded so that the sequence Ap(- — ty) is
bounded, requiring that the limits (1.15) exist uniformly on compact subsets is equivalent to
requiring convergence — in the strict topology, while weak convergence in L2(RY) is equivalent
to weak* convergence in L™ (RY)
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(1.7) and (1.11). Operators A € W belong to BDO(Y') for all spaces Y = P(ZN,C),
p € [1,00]. For p = 0o, an analogue of the main result of [73] is formulated (in fact,
the proof in [55] literally consists of the sentence ‘The proofs of Theorems 4.1 and
4.2 repeat the proofs of Theorems 2.1 and 2.2 in [73], with obvious amendments.’):
A is @ iff all its limit operators are injective, i.e. Favard’s condition holds; if A
is ®_ then all its limit operators are surjective. The paper concludes with a first,
simplified version of our Theorem 6.40 below, with a somewhat abbreviated proof:
that A € W is either Fredholm on all spaces Y = ¢P(Z~,C), p € [1, 00|, or on none
of them. Moreover, the uniform boundedness condition on the inverses of its limit
operators is redundant. The latter implies that

(117) SPeCess (A) = U SpeC(Ah)
Ap€o(A)

if A € W, with all expressions independent of p € [1, 00].

From here on we mainly follow the discrete branch of the limit operator story
since this is the focus of our memoir, noting that the further generalisation from
scalar-valued to vector-valued (P spaces Y = (P(Z" U) with an arbitrary complex
Banach space U enables us to emulate differential, integral and pseudo-differential
operators on LP(RY) (e.g. [56]) by operators on the discrete space Y with U =
LP([0,1]V) (see e.g. [54, 84], the discussion in the paragraphs after equation (1.5)
above, and Chapter 8 below).

In the last 10 years, the limit operators of band-dominated operators on the
discrete spaces Y = P(ZN ,U) with p € (1,00) have been extensively studied by
Rabinovich, Roch, Silbermann and a small number of their coauthors. The first
work of this troika was [83], where the results of [55] for p € (1, 00) are picked up,
this time with full proofs, and are extended, utilised and illuminated in connection
with other problems and concepts such as the applicability of the so-called finite
section method (a truncation method for the approximate solution of corresponding
operator equations) and the idea of two different symbol calculi in the factor algebra
of BDO(Y) modulus compact operators. Another important result of [83] is the
observation that the limit operator idea is compatible with the local principle of
Allan [2] and Douglas [36] for the study of invertibility in non-commutative Banach
algebras. The latter result was used to slightly relax the uniform boundedness
condition on the inverses of the limit operators in the general Fredholm criterion
[83, Corollary 5] and to completely remove this condition in the case of slowly
oscillating coeflicients [83, Theorem 9.

In [84], building on results of [80, 83], the same authors tackle the case when
U is an arbitrary Hilbert space under the additional condition that p = 2 so that
Y = (?(ZN,U) is a Hilbert space too and the set of band-dominated operators on
it is a C*-algebra. In this C* setting, which makes life slightly easier than the more
general case when BDO(Y) is merely a Banach algebra, the serious obstacle of
an infinite dimensional space U is overcome. The matrix [A] that corresponds to
an operator A € BDO(Y') now has operator entries a;; € L(U) which are infinite
dimensional operators themselves. This changes the Fredholm theory completely:
An operator A with only finitely many nonzero entries a;; is in general no longer
of finite rank — not even compact. That is why Rabinovich, Roch and Silbermann
replace the ideal K(Y) of compact operators by another set, later on denoted
by K(Y,P), which is the norm closure of the set of all operators A with finitely
many nonzero matrix entries. Also this set is contained in BDO(Y'), it is an ideal
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there and it is shown that if for A € BDO(Y') there exists a K (Y, P)-regulariser
B e L(Y),i.e. AB—I and BA—I arein K(Y,P), then automatically B € BDO(Y').
If U is finite dimensional and p € (1,00), which was the setting of [83], then
K(Y,P) is the same as K(Y') and invertibility modulo K (Y, P), termed invertibility
at infinity in [84], coincides with invertibility modulo K(Y) alias Fredholmness. So
one could argue that in [83] the subject already was invertibility at infinity which,
as a coincidence, turned out to be Fredholmness too. In fact, the major milestone
in [84] was to understand that the limit operator method studies invertibility at
infinity and not Fredholmness, and therefore the new ideal K(Y,P) was the right
one to work with. Fortunately, invertibility at infinity and Fredholmness are closely
related properties so that knowledge about one of them already says a lot about
the other and so the limit operator method can still be used to make statements
about Fredholmness — via invertibility at infinity.

Another problem that occurs when passing to an infinite dimensional space U
is that the simple Bolzano-Weierstrass argument (coupled with a diagonal construc-
tion) previously showing that, for A € BDO(Y'), every sequence h = (h(k))ken C
ZN with |h(k)| — oo has a subsequence g such that the matrix of the translates
V_ gty AVyi)] = [@igg(k),j+9(k))ijezy converges entry-wise as k — oo, is no longer
applicable as the matrix diagonals are bounded sequences in the infinite dimen-
sional space L(U) now. So the class of all operators A € BDO(Y') for which every
such sequence h has a subsequence g with this convergence property (the limiting
operator being the limit operator A,) had to be singled out in [84]. Operators of
this class were later on termed rich operators.

There is one more technical subtlety when passing to an infinite dimensional
space U: The so-called P—convergence (1.9) that is used in (1.10) is equivalent to
strong convergence B, — B and B — B* if p € (1,00) and U is finite dimensional;
in fact, this is how it was treated in [83]. So this was another difference to [83]
although nothing new since P—convergence was de facto introduced for exactly this
purpose by Muhamadiev [73] already.

The next two works in this story were the very comprehensive monograph
[85] by the troika Rabinovich, Roch and Silbermann, which summarised the state
of the art to which it largely contributed itself, and the PhD thesis [61] of the
second author of this memoir. Both grew at roughly the same time and under
mutual inspiration and support. In [85], besides many other things that cannot
be discussed here, the case Y = (P(ZN,U) was successfully treated for arbitrary
Banach spaces U and p € (1,00). The gaps at p € {1,00} are filled in [68] and
finally in [61]. The challenge about p = oo is that duality, which is a frequent
instrument in the arguments of [83, 84, 85], is more problematic since the dual
space of Y is no longer one of the Y-spaces at hand. Instead one works with
the predual and imposes the existence of a preadjoint operator acting on it. Note
that some of these ideas have been picked up and are significantly extended and
improved in Section 6.2 below.

Another important thread that should be mentioned here is the determination
not only of Fredholmness but also of the Fredholm index by means of limit oper-
ators. The key paper in this respect is [82] by Rabinovich, Roch and Roe, where
the case N = 1, p = 2, U = C has been studied using C*—algebra techniques
combined with K—theory. The idea is to decompose Y = ¢?(Z,C) into the sub-
spaces Y_ and Y, that correspond to the negative and the non-negative half axis,
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respectively, thereby splitting the twosided infinite matrix [A] of A € BDO(Y) into
the four onesided infinite submatrices [A__],[A_1],[A4_] and [A4,]. Since [A_,]
and [A4_] are compact (note that U has finite dimension), these two blocks can
be removed without changing Fredholmness or the index. By a similar argument,
for every m € N, the first m rows and columns of both [A__] and [A4] can be
removed without losing any information about Fredholmness and the index. So it
is not really surprising that also the index of A is exclusively stored in the asymp-
totic behaviour of the matrix entries of [A__] and [A;,] at infinity, i.e. in the
limit operators of A. Indeed, calling the index of A+, understood as an operator
on Yy, the =—index of A, respectively, it is shown in [82] that all limit operators
of A with respect to sequences tending to +co have the same +—index as A has,
respectively. Since the index of A is the sum of its plus- and its minus-index, this
gives a formula for the index of A in terms of plus- and minus-indices of two of its
limit operators. The index formula of [82] was later carried over to the case N =1,
p € (1,00), U = C in [91] (where it was shown that the index of A does not depend
on p — see [64] for the same result in the setting of a more general Banach space U
and p € [1, 00]), re-proved by completely different techniques (using the sequence of
the finite sections of A) in [86] and generalised to the case of an arbitrary Banach
space U in case A = I + K with a locally compact operator K (i.e. all entries of
[K] are compact operators on U) in [81].

The most recent extended account of the limit operator method is the mono-
graph [63] by the second author. Besides a unification of techniques and results
of [61] and [85], an exposition of the topic of infinite matrices, in particular band-
dominated operators, that is accessible for a wide audience and a number of addi-
tions and clarifications to the theory, it also contains the first fruits of the work with
the other author of this memoir. For example, it contains a treatment of boundary
integral equations on unbounded surfaces (also see [18, 19]), their Fredholmness
and finite sections, as well as more complete results on the interplay of Fredholmness
and invertibility at infinity and on different aspects of the finite section method.

The above is an account of the main development of limit operator ideas and
the theory of limit operators, starting with the work of Favard [37]. However,
there are many other branches of this story (such as the “frequency limit opera-
tors” discussed in [53] or the “zoom limit operators” discussed in [11] and briefly
in Section 3.6 of [63]) that we have not mentioned explicitly. We have also omit-
ted mention of a number of instances where limit-operator-type ideas have been
discovered and applied independently. In particular, limit-operator-type ideas have
been applied recently to great effect in the spectral theory of discrete Schrodinger
and Jacobi operators as well as more general bounded linear operators on Hilbert
spaces. One instance is the recent work of Davies [29, 30], where the spectrum
of a random Jacobi operator A is studied by looking at strong limits of sequences
U, AU}, where U, denotes a sequence of unitary operators. (This idea in the work
of Davies dates back to an earlier paper of Davies and Simon [32], where the idea
of the limit class of an operator is introduced, which has some similarity to the
idea of an operator spectrum.) In [29] the notion of a pseudo-ergodic operator is
introduced (we take up their study as a significant example in Chapter 7 below),
this idea capturing many aspects of the spectral behaviour of random operators
while eliminating probabilistic arguments. In limit operator terminology, a Jacobi



