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Preface

This book grew out of a survey course by the same title that I developed
and teach at the University of Wisconsin-Madison. The course consists
of fifteen 100-minute weekly lectures and a weekly programming project.
These lectures form the fifteen chapters of the book, although I have in-
cluded considerably more material in the book than I am able to cover in
the lectures. The students are about half undergraduates and half gradu-
ates and other researchers, representing a wide variety of fields in science
and engineering. More details about the course can be found on the World
Wide Web at http://sprott.physics.wisc.edu/phys505/.

The book is an introduction to the exciting developments in chaos and
related topics in nonlinear dynamics, including the detection and quan-
tification of chaos in experimental data, fractals, and complex systems. I
have tried to mention, however briefly, most of the important concepts in
nonlinear dynamics. Most of the basic ideas are encountered several times
with increasing sophistication. This is the way most people learn, and it
emphasizes the interconnectedness of the various topics. Emphasis is on
the physical concepts and useful results rather than mathematical proofs
and derivations. The book is aimed at the student or researcher who wants
to learn how to use the ideas in a practical setting, rather than the math-
ematically inclined reader who wants a deep theoretical understanding.

While many books on chaos are purely qualitative and many others
are highly mathematical, I have tried to minimize the mathematics while
still giving the essential equations in their simplest possible form. T assume
only an elementary knowledge of calculus. Complex numbers, differential
equations, matrices, and vector calculus are used in places, but those tools
are described as required. The level should thus be suitable for graduate and
advanced undergraduate students in all fields of science and engineering as
well as professional scientists in most disciplines.

I feel that chaos is best learned by a hands-on approach, and because of
its nature, this means writing simple computer programs. Thus, in addition
to the usual algebraic exercises, I have included at the end of each chapter
the computer project that my students turn in each week. The projects
are open-ended and have an optional part meant to challenge the more
ambitious students. I have found that the required part usually takes about
one to four hours, depending on the student’s computational skill.
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Programming advice

I do not recommend any particular computer platform or programming
language, and I do not provide much formal help with programming. I feel
programming is a skill, like mathematics, that all science and engineering
students should acquire somewhere during their training. Students who
have never programmed can usually learn to do so while taking the course.
In fact, chaos offers an enjoyable way to develop and hone these skills.

I recommend that students acquire a personal computer and a modern
compiler in a language of their choice. Just as the best language for speaking
is the one most familiar to you, the best computer language is the one you
are most comfortable using. If you are skilled in a language such as BASIC,
C, Java, Pascal, or FORTRAN, get a modern interactive compiler for that
language and use it on your PC. Any language will suffice, and modern
compilers in the various languages are so good that there is little reason to
prefer one over another. If you have never done any serious programming,
you might start by learning BASIC. It is easy to learn and more than
adequate for the projects in this book. My personal favorite is PowerBASIC
(http://www.powerbasic.com/) because it is easy to learn, powerful, and
as fast as any C compiler T have encountered. I do most of my programming
in DOS, but Windows versions of the PowerBASIC compiler are available.

Another possibility is one of the math packages such as Mathematica,
Maple, Matlab, MathCAD, Derive, or Theorist, or even a modern spread-
sheet such as Excel, Quattro Pro, or Lotus 1-2-3. This option would be
most sensible if you are already highly skilled in its use. You should be
able to complete most if not all of the projects in this way. In the long run,
you will probably find a conventional programming language more versatile
and useful, however.

In any case, I would advise you to develop your programs as modular
subroutines and to document them so that they can be reused. There will
be occasions while working through the book where you will need some-
thing you did several chapters before. Especially in Chapters 9-13, dealing
with time-series analysis, you will develop routines that may be of use in
analyzing data from your own research.

Web resources

A Web page for the book at http://sprott.physics.wisc.edu/chaostsa/ con-
tains supplementary materials, computer programs, color versions of some
of the figures, animations, errata, answers to the exercises, and links to
Web resources. I will keep this updated as links change and as I become
aware of new resources that may be of interest. You will also find informa-
tion there on how to contact me in case you find errors in the book, want
to comment on it, or make suggestions for future editions.
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Strange attractor for the three-dimensional map X,41 = X2 — 0.2X,, —
09X, 1+0.6X,,_2 (see §6.10.2).
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Complex two-dimensional pattern from the hundred-thousandth generation
of a deterministic cellular automaton in which a dead cell remains dead if
exactly six of its eight nearest neighbors are alive and otherwise gives birth,
and a live cell remains alive if one, two, or six of its eight nearest neighbors
are alive and otherwise dies (see §15.1.4).
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