INTRODUCTION TO COMPUTER SYSTEMS

Using the PDP-11 and Pascal

INTRODUCTION TO
COMPUTER SYSTEMS

Using the PDP-11 and Pascal

Glenn H. MacEwen

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotd Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi Panama
Paris Sdo Paulo Singapore Sydney Tokyo Toronto

INTRODUCTION TO COMPUTER SYSTEMS
Using the PDP-11 and Pascal

Copyright © 1980 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher.

67890 HDHD 898765

This book was set in Times Roman by Progressive Typographers.
The editors were Charles E. Stewart and Frances A. Neal;

the production supervisor was Richard A. Ausburn.

The drawings were done by Burmar.

Library of Congress Cataloging in Publication Data

MacEwen, Glenn H
Introduction to computer systems.

(McGraw-Hill computer science series)

Bibliography: p.

Includes index.

1. PDP-11 (Computer) 2. Pascal (Computer program
language) 1. Title.
QA76.8.P2M3 001.6’4 79-22646
ISBN 0-07-044350-5

PREFACE

This text provides an introduction to the internal logical structure of computers
and the techniques of machine-level programming. It is intended to give the stu-
dent an understanding of the basic structure and functioning of conventional
computer systems.

The student should possess a programming ability in some high-level lan-
guage as the necessary background. The level of competence required is that
obtainable from one full course of study in programming and applications.

On completion of the course described in this text the student should have
the ability to read the documentation of a conventional computer system and be
able to understand the basic functioning of the machine as well as the services
provided by the operating system. For example, the documents commonly
called ‘‘Principles of Operation’” and ‘‘System Programmer’s Guide’’ should
be understandable.

Basic computer structure is taught in the context of a particular machine,
the Digital Equipment Corporation PDP-11. At first, assembly-language pro-
gramming is used to provide an understanding of machine functioning. High-
level system programming languages are then introduced as a vehicle for pro-
gramming in the remainder of the text. Various architectural and programming
topics are taught in the context of two particular PDP-11 operating systems,
RT-11 and UNIX,! although each topic is generalized as much as possible in
accompanying discussion.

Data structures are not treated as a separate topic but are introduced in the
context of particular applications. This is very specifically done on the assump-
tion that most students will probably receive a complete treatment of data
structures in another course.

This text has been used in a course at the second-year level of a computer
science program and has also provided the basis for a graduate half course in

L UNIX is a trademark of Bell Laboratories.

XV

Xvi PREFACE

electrical engineering. Although the text assumes a good exposure to program-
ming in a well-structured high-level programming language, it may be that not
all students will have this preparation. It is usually necessary, therefore, to sup-
plement the chapters on the languages Pascal and C with some tutorial ma-
terial. Pascal, particularly, should be introduced early if sufficient familiarity
has not been attained, since many algorithms early in the text are expressed in
Pascal-like notation.

All material required for the curriculum of course CS-3, Assembly Lan-
guage Programming, prepared by the ACM Committee on Curriculum in Com-
puter Sciences, is included. Specifically, parts of Chapter 1, Chapters 2 through
9, and Chapter 14 provide a basis for this course with sufficient optional ma-
terial to give the instructor some flexibility. In addition, Chapter 0 gives a pre-
view of some material so that the student can begin to apply, almost immedi-
ately, what he or she will learn in more detail later. It is recommended, also,
that some material on number systems from Chapter 1 be included in any ver-
sion of CS-3 to be offered from this text.

The text provides an excellent basis for further study in computer architec-
ture and operating systems. The approach taken here is to present some of the
mechanisms that will be encountered in the study of operating systems without
attempting to introduce many of the abstractions that are useful in designing
operating systems. In this way the student will be well prepared to study these
abstractions, having seen examples of the problems they are intended to solve.
The text is, therefore, essentially a bottom-up approach to systems program-
ming, since the author feels that students must understand examples before
they are ready to fully understand abstractions. To this end the advanced ma-
terial stops just short of the issues and complexity that are more properly stud-
ied with the abstractions of operating systems theory.

Material has been carefully sequenced to avoid forward references and to
present only sufficient information for the reader to progress in relatively mod-
est steps. The major exception to this is Chapter 0, in which a bit of a preview is
given so that the student can begin to program immediately. This is intended to
avoid making the early material too dry while the groundwork is laid for pro-
gramming topics.

Chapter 1 contains the necessary introduction to number systems. Where
this material has already been covered in another course, one can start with
Chapter 2, which discusses the basic components of a computer in general
terms. Chapter 3 gives a partial view of the PDP-11; the intent here is to avoid
becoming involved in a discussion of the unique way that addressing is accom-
plished in the PDP-11. Consequently, students can move on quickly to pro-
gramming in Chapter 4 without getting stuck on these details, which are cov-
ered in Chapter 5.

Chapter 6 comprises some elementary topics concerned with structuring
programs. Macros, however, are left to Chapter 7 where they are treated rather
extensively. It is important to include at least the basic material on macros in
order to understand the material that follows.

PREFACE Xvii

Chapter 8 fulfills two major objectives. First, it explains the basic algo-
rithms of an assembler so that the translation process is made clear to the stu-
dent. Second, it uses the symbol table as an example within which to discuss
the topic of sorting and searching. This, of course, follows the policy of treating
data structures only in the context of particular applications. Much of the ma-
terial in this chapter can, however, be omitted without affecting comprehension
of following material.

Chapter 9 brings together all considerations of how a program is trans-
formed from assembly-language form into its final machine-language form.
Chapter 10 introduces concurrency, which was carefully omitted from the in-
troduction to I/O in Chapter 5. Is is not until this point that interrupts are intro-
duced, so that the student has a rather solid foundation before having to cope
with this difficult area. Chapter 11 introduces the supervisor as a program that
makes the machine more reliable and more convenient to use. Traps and inter-
rupt handling services are covered here.

Chapters 12 through 17 constitute a set of special topics that can be se-
lected according to the needs of a specific curriculum. In our course at Queen’s
approximately 25 percent of the time is spent on these topics. However, since
some features of Pascal that do not appear in earlier chapters are used in these
chapters, a review is included in Chapter 12. The description of the language is
not complete and is given rather informally so that a language text or manual is
necessary if programming is to be assigned. The language C is also included
here as an example of another system language and to enable those with access
to UNIX system documentation to read programs.

Although Chapters 13 through 17 may be selected as desired, I would
expect Chapter 15 on multiprogramming to be given priority because of its cen-
tral importance to the subject of systems programming. Chapter 17 is rather
ambitious, attempting to introduce methods of systematic software system
design. The material here derives largely from the work of D. L. Parnas and
J. F. Guttag. I must, however, take responsibility for attempting to properly
interpret their work.

Finally, Chapter 18 describes the structure of a moderately large program
that was designed according to a disciplined method. There are several ways to
use it. Portions can be introduced throughout the course and given as program-
ming assignments so that a student has a complete program at the end of the
course. (This is the way that I have used it.) It can be used as an exercise in
group programming. It can simply be studied as an exercise in design princi-
ples. Whichever route is chosen, this project provides exposure to large soft-
ware system design, something that is not often gained by students.

A particularly difficult aspect of producing a book is deciding when to stop.
One is never quite satisfied with the work nor completely confident that errors
do not lurk in hidden places. But at some point it is necessary to say ‘‘this is it”’
and to send it off to the publisher. I therefore take full responsibility for defi-
ciencies or errors that are found and would appreciate hearing about them
quickly.

xviii PREFACE

The manuscript was prepared in the Department of Computing and Infor-
mation Science at Queen’s University and partly in the Department of Electri-
cal Engineering at Royal Military College of Canada, to both of which 1 am
grateful for the facilities to do this. The former made available the computing
facilities with which the manuscript was prepared using a text editor written by
I. A. Macleod and D. G. Ross. Appreciation is due to many people who con-
tributed typing, editing, and reading of the manuscript. To attempt to list all
would risk omissions; those involved are aware of their contribution. Particular
mention, however, is due to T. P. Martin, who did the original design of the
MITE system described in Chapter 18. His M.Sc. thesis work, which included
the design, was supported by a grant from the National Research Council of
Canada. Finally, I wish to acknowledge the tolerance of those to whom I made
work commitments that were somewhat neglected as book writing tended to
swallow the available time.

Glenn H. MacEwen

CONTENTS

Chapter 0
0-1
0-2
0-3

Chapter 1
1-1
1-2
1-3
1-4
1-5
1-6
1-7

Chapter 2
2-1
2-2
2-3

2-4
2-5

Preface

Introduction

Algorithms and Languages
Assembly Language
Getting Started

0-3.1 Machine Access

0-3.2 Files

0-3.3 The Operating System
0-3.4 Systems Programs

Representation of Numbers and Data

General

Arithmetic in Nondecimal Bases
Conversion of Numbers between Bases
Representation of Negative Numbers
Overflow

Fractional Numbers

Alphanumeric Data Representation

Basic Computer Structure

Memory

The Processor

Representation of Programs
2-3.1 Three-Address Machines
2-3.2 Single-Address Machines
2-3.3 Stack Machines

2-3.4 Practical Processors
Internal Processor Structure
Program and Data Separation

XV

~) BN =

R eRaNaRNe 4

11

11
12
13
15
20
22
23

26

26
27
30
31
34
36
37
37
40

ix

X CONTENTS

Chapter 3
3-1
32
3.3
3-4
3-5
3-6
37
3-8

Chapter 4
4-1
4-2
4-3
4-4
4-5
4-6
4-7

Chapter 5
5-1
52

5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11

Chapter 6
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

6-10
6-11

The PDP-11: A Simplified View

PDP-11 Memory

PDP-11 Processor

Direct Addressing
Register-Mode Addressing
Immediate Addressing
Indexed-Mode Addressing
Indirect-Mode Addressing
Single-Address Instructions

Assembly Language

Assembly Time versus Execution Time
Statements

Labels

Reserving and Initializing Memory
Example Program 1

Example Program 2

Example Program 3

The PDP-11: A More Detailed View

Addressing Modes
Program-Counter Addressing

5-2.1 Immediate and Absolute Addressing
5-2.2 Relative Addressing
Condition Codes and Branching
Using the Condition Codes

The Jump Instruction

Example Program 4

Logical Operations: Bit Addressing
Input-Output

Input with the Paper-Tape Reader
Output with the Paper-Tape Punch
Example Program 5

Program Segmentation

The System Stack
Subroutine Instructions
Input-Output Subroutines
Example Program 6
Parameter Passing

Register Saving

Coroutines

Reentrancy

Recursion
Position-Independent Code
Program Module Interface Specifications

42

42
44
45
48
50
53
58
61

64

64
65
65
66
68
69
71

74

74
79
79
81
83
86
92
93
94
96
98
100
101

107

107
112
114
116
120
126
129
132
135
137
140

6-12
6-13

Chapter 7
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9

7-10
7-11
7-12
7-13
7-14

Chapter 8
8-1
8-2
8-3
8-4
8-5
8-6

8-7

8-9

Chapter 9
9-1
9-2

Example Software System
Error Returns

Macro Assembly

Defining a Macro
Conditional Assembly
Definite Iteration Assembly
Concatenation
Numeric-Valued Parameters
List-Valued Parameters
Created Symbols
Subconditionals

Testing Arguments

Indefinite Iteration Assembly
Nested Macro Definitions
Recursive Macro Calls
System Macros and Listing Control
Macros and Subroutines

Assembler Construction

Two-Pass Assembly

One-Pass Assembly

Designing an Assembler

Interpretation and Translation

Symbol Table Organization

Linear Storage

8-6.1 Linear Insertions

8-6.2 Linear Searching

8-6.3 Sorting a Linear Table

8-6.4 A Sort Procedure

8-6.5 Two-Pass Assembly with Linear Storage
Hashing

8-7.1 Insertions with Hashing

8-7.2 Searching with Hashing

8-7.3 Sorting a Hash Table

8-7.4 Two-Pass Assembly with Hashing
Tree Storage

8-8.1 Tree Insertions

8-8.2 Tree Searching

8-8.3 Sorting a Tree

8-8.4 Two-Pass Assembly with Tree Storage
Packing Symbols

Linking, Loading, and Interpretation

Absolute Loaders
Relocating Loaders

CONTENTS xi

142
151

154

154
156
159
161
161
163
166
167
170
172
172
173
173
174

180

181
183
184
192
193
194
194
194
195
204
207
209
210
211
214
214
214
215
216
217
218
218

222

223
226

xii CONTENTS

9-3

9-4
9.5

Chapter 10
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

10-10
10-11
10-12
10-13

10-14

Chapter 11
11-1
11-2
11-3
11-4
11-5

Chapter 12
12-1

12-2

Linkers

9-3.1 Relocatable Load-Module Output
9-3.2 Absolute Load-Module Output
9-3.3 Object-Module Output
Translate-and-Go Systems
Interpretation

Concurrent Input-Output

I/O Instructions

Busy-Waiting I/O

Interrupts

Enabling and Disabling Interrupts

Interrupt Return

Masking Interrupts

Interrupt Priorities

Noninterrupt Systems

Classification of Devices

Direct Memory Access

Buffering

Input-Output Processors

PDP-11 J/O Devices

10-13.1 Paper-Tape Reader-Punch PC11

10-13.2 Alphanumeric Display-Keyboard
VT52

Real-Time Systems

Supervisors and Traps

Error Traps

Program Traps

Interrupt Handling
Supervisor State
Alternative Architectures

Systems Languages

Pascal

12-1.1 Data Types

12-1.2 Expressions

12-1.3 Statements and Control Structures
12-1.4 Program Units

12-1.5 Pascal Exampie

The Language C

12-2.1 Data Types

12-2.2 Expressions

12-2.3 Statements and Control Structures
12-2.4 Program Units

12-2.5 C Example

232
234
238
239
240
240

243

243
245
247
250
251
252
255
258
258
259
260
263
264
265

266
268

270

271
272
274
275
277

279

279
280
285
285
286
286
291
291
293
294
295
296

Chapter 13
13-1

13-2

Chapter 14

14-1
14-2

14-3
14-4
14-5
14-6
14-7
14-8
14-9

Chapter 15
15-1
15-2
15-3
15-4

15-5

15-6
15-7

Chapter 16
16-1
16-2

Operating Systems

RT-11

13-1.1 The Monitor

13-1.2 Keyboard Commands
13-1.3 Program Requests
13-1.4 Command String Interpretation
13-1.5 Systems Programs

The UNIX System

13-2.1 The File System

13-2.2 The Shell and Programs
13-2.3 File Transfers

13-2.4 Systems Programs

Auxiliary-Memory Devices and
Physical Files

Economic Considerations
Auxiliary-Memory Devices

14-2.1 RXI11 Floppy Disk System
Physical Files

Sequential Files

Indexed Files

File Directories

RT-11 Files

UNIX Files

Access Methods and Logical Files

Multiprogramming

Performance Considerations
Reentrant Programs

The Multiprogramming Supervisor
Processor Scheduling

15-4.1 Short-Term Scheduling
15-4.2 Nonpreemptive Scheduling
15-4.3 Preemptive Scheduling
Memory Management

15-5.1 Fixed Allocation

15-5.2 First-Fit

15-5.3 Best-Fit

15-5.4 Buddy Systems

15-5.5 Compaction

RT-11 Multiprogramming

UNIX System Multiprogramming

Memory Mapping and Protection

Protection Keys
Memory Mapping

CONTENTS xiii

302

304
304
306
306
307
307
308
308
309
309
311

312

312
313
318
319
321
323
325
326
327
328

331

331
333
333
336
336
337
339
342
343
344
346
349
350
350
351

357

358
359

xiv CONTENTS

16-3
16-4
16-5
16-6
16-7
16-8

Chapter 17
17-1
17-2
17-3

17-4
17-5
17-6
17-7

17-8
17-9

Chapter 18
18-1
18-2
18-3

QW >

Base and Bound Registers

Paged Allocation

Segmented Allocation

Further Study in Memory Mapping
PDP-11 Memory Mapping

UNIX System Use of Memory Mapping

Software Design Specification and Testing

Program Quality

Abstraction

Design Methods

17-3.1 Top-Down Programming
17-3.2 Information-Hiding Modules
Specifications

Abstract Data Types

Structural Design

Formal Semantic Specifications
17-7.1 Axiomatic Specifications
17-7.2 Abstract Model Specifications
Error Handling

Testing

17-9.1 Objectives of Testing

17-9.2 Test Data Selection

17-9.3 Test Management

The MITE System

MITE Functional Specifications
MITE Structural Design Using Abstract Data Types
Implementation Notes

Appendixes

Floating-Point Numbers
Summary of PDP-11/03 Instructions
Pascal Syntax

Bibliography
Index

360
361
363
364
365
367

370

370
371
372
373
373
374
378
381
388
388
390
393
395
396
396
397

400

400
402
434

438

438
443
446

452
457

CHAPTER

ZERO
INTRODUCTION

The power of a digital computer derives from its ability to store a large quantity
of information, in a way permitting ready access, and to process that informa-
tion. In the following chapters we first consider methods of representing infor-
mation for computer storage. These methods reflect the fact that the physical
devices used for storage, called memory devices, consist essentially of a set of
switches, each switch being in one of two states: on or off. All information to be
stored must, then, be transformed into a representation that can be mirrored by
a set of switches.

Having a basic understanding of information representation, we will move
on to consider the basic mechanisms within a computer that enable the machine
to process information. These mechanisms form a set of basic operations which
may then be combined to form an algorithm. Algorithms, based on the opera-
tions provided by the machine, are specified by writing a program in machine
language. A computer can execute a program expressed in machine language in
a way analogous to that of a person carrying out the actions expressed in a list
of instructions printed on a piece of paper. An interesting feature of most com-
puters is that machine-language programs are stored in memory devices in ex-
actly the same way as the data to be processed.

A programmer need not write programs in machine language; it is a very
tedious process to specify an algorithm by setting a vast number of switches.
Most computer manufacturers supply customers with a program called an as-
sembler that translates programs written in a symbolic programming language
into machine language. Such symbolic languages, called assembly languages,
mirror the internal structure of the computer in their design. Assembly lan-
guage is used in situations where a programmer needs precise control over the
internal functioning of a computer and the programs are small enough to be

1

2 CHAPTER 0

manageable without more elaborate languages. In our case, assembly-language
programming provides an excellent means of gaining an understanding of the
internal functioning of computers. The basic hardware computer, manifested
by circuits and wires, needs a vast amount of program, its software, to trans-
form it from an executor of machine instructions into an executor of commands
by human users. It is primarily with this large amount of software that this text
is concerned. Along the way of course it is necessary to understand the various
hardware structures that exist in support of the software.

Although assembly language is a useful vehicle for explaining the details of
hardware structure, it is not convenient for writing software. For writing well-
structured, reliable software it is not at all suitable.

A class of high-level languages called systems languages are more appro-
priate for writing large programs. If necessary, assembly language can be used
in critical parts of the software. Systems languages allow precise control over
the hardware while encouraging the programmer to use well-structured design
in the programs. Most newer software systems are now written in systems lan-
guages.

As we proceed in the study of hardware and software structures, there will
be much preoccupation with detail, especially with regard to our example sys-
tem, the PDP-11. The reader should try to remember that this detail will vary
somewhat from machine to machine and that our primary purpose is to study
fundamental concepts. Computing is a subject in which one can learn concepts
well only by doing a lot of computing, and for this one needs an example
system.

0-1 ALGORITHMS AND LANGUAGES

Computers exist primarily to facilitate the construction and execution of algo-
rithms. The study of computers is then largely a study of algorithms and of the
machine structures that support their implementation. An algorithm is a pre-
cise set of unambiguous instructions that can be followed and carried out by
some execution mechanism (a computer) such that the execution eventually
terminates. The language used to express the instructions of an algorithm will
vary with the intended use. In our case we wish to describe algorithms for the
purpose of reading and understanding them. It follows, then, that some lan-
guage close to English will be most comfortable for doing this. Unfortunately,
English itself is a very ambiguous medium for communicating precise meaning.
On the other hand, the language used to describe instructions directly to a com-
puter is far too detailed for easy reading. Besides, one objective here is to ex-
plain machine language, so we can hardly use it as a vehicle of explanation.
The compromise commonly adopted to informally explain algorithms is
what can be called structured English: Ordinary English statements are imbed-
ded in statements of a high-level programming language, and thus we obtain the
readability of English with the precision of a programming language. On the
assumption that the reader has been exposed to at least one high-level program-

INTRODUCTION 3

ming language, the following chapters present algorithms based on a particular
language, Pascal, without detailed explanation of the meaning of the statements
involved. Pascal is a readable enough language that experience with program-
ming in another language should yield sufficient understanding.

To illustrate structured English, here is a set of instructions for reading this
text.

VAR i,j: INTEGER;
IF you have no programming background THEN
take a course in programming;
FORi:=1TO 18 DO BEGIN
WHILE chapter i is not fully understood DO
read chapter i;
FOR j := 1 TO number of exercises in chapter i DO
complete exercise i-j END

English statements are written in lowercase, as are program-variable
names. In this program, i and j are declared in the first line to be integer vari-
ables. As can be seen, Pascal keywords are written in uppercase. The semico-
lon character (;) is used to separate statements to be executed sequentially. In
this program, for example, there are, following the single declaration, two
statements. There may appear to be more than two statements, but this is be-
cause a compound statement can be formed by enclosing a sequence of state-
ments with a BEGIN . . . END pair of keywords. Such a compound state-
ment can be used in a program wherever a simple statement can appear. The
first statement starts with IF and the second with FOR. Notice that the indenta-
tion is carefully done to indicate the statement structure.

The first statement is a conditional with the meaning that the reader
without a background of programming should obtain this background before at-
tempting the material in the text. The semantics of this form of the IF statement
are simply that the statement following the THEN is executed only if the condi-
tion following the IF is true.

The second statement is an iteration to be carried out 18 times. That is, the
statement following the DO is carried out once for each one of a set of values to
be assigned, in sequence, to i. The statement which is to be repeated is, in this
example, a compound statement itself comprising two statements.

The first of these nested statements is an indefinite iteration, that is, a loop
to be repeated an indefinite number of times depending on some specified con-
dition. The WHILE is an indefinite iteration in which the looping condition is
evaluated before each execution. Thus, if the condition is true, then the gov-
erned statement is executed; if it is false, looping terminates and execution pro-
ceeds to the statement following the WHILE statement. Obviously, execution
of the statement governed by the WHILE had better affect the result of evalu-
ating the condition or the iteration will never terminate!

The second nested statement is another FOR in which the number of itera-
tions varies with the value of i determined in the outer loop.

Although there are many other kinds of statements in Pascal, this example

4 CHAPTER

illustrates three fundamental kinds of control structures required to express al-
gorithms: sequential execution, indefinite iteration, and conditional execution.
In the case of conditional execution, we have actually shown only a special
case of the general conditional structure, the IF . . . THEN . . . ELSE. To
illustrate this general form, a slightly different set of instructions than those
above for reading this text are

IF you have no programming background THEN
take a programming course
ELSE proceed with this text as indicated above

The difference here is that the statement following the THEN is executed if the
condition is true and the statement following the ELSE is executed if it is false.
In either case control passes to the following statement if one is supplied. The
reader without a background, therefore, does not get to read the text even if the
required background is obtained!

It is not the intention to teach Pascal in detail here. Various features will be
introduced and used throughout, and a later chapter will summarize the lan-
guage. Enough information will be given to enable the reader to read the text,
but if programs are to be written in Pascal then a language manual for the sys-
tem in use is required.

0-2 ASSEMBLY LANGUAGE

Machine-level programming in assembly language is characterized by very sim-
ple, primitive operations. In general, much more effort is required of the assem-
bly-language programmer to accomplish a task than would be required using a
high-level language. More significant, however, is the fact that assembly lan-
guage gives the programmer much less assistance in detecting errors and
thereby increasing reliability. Consequently, much greater care and discipline
are required in using assembly language.

Although later chapters explore assembly language in more detail, we can
preview some of what is to come by looking at some simple cases. With the
reader’s appetite satisfied somewhat, we can then progress more systemati-
cally.

One of the primitive data types available in assembly language is the
character. Much assembly-language programming deals with character manip-
ulation. A character value is stored in a memory cell which can be given a
name, much as a high-level language variable has a programmer-assigned name
that is associated with its value. In the case of character storage let us just take
as an illustration the following statement:

Q: ASCIE /2

This statement specifies that there is to be a cell named Q containing the
character value ‘‘question mark.”” The cell could have been given a longer

