

Biology and Industrial Applications

J.W. Bennett M.A. Klich

Aspergillus: Biology and Industrial Applications

Edited by

J.W. Bennett

Department of Cell and Molecular Biology Tulane University New Orleans, Louisiana

M.A. Klich

United States Department of Agriculture Southern Regional Research Center New Orleans, Louisiana Copyright @ 1992 by Butterworth-Heinemann, a division of Reed Publishing (USA) Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, it is the policy of Butterworth-Heinemann to have the books it publishes printed on acid-free paper, and we exert our best efforts to that end.

Library of Congress Cataloging-in-Publication Data

Aspergillus: Biology and industrial applications / edited by J.W. Bennett, M.A. Klich.

p. cm.—(Biotechnology series; 23)

Includes bibliographical references and index.

ISBN 0-7506-9124-7 (alk. paper)

1. Aspergillus - Biotechnology. I. Bennett, J.W. II. Klich, M.A. III. Series:

Biotechnology series (Reading, Mass.); 23.

TP248.27.F86A87 1992

589.2'3-dc20

91-37961

CIP

British Library Cataloguing in Publication Data

Bennett, J.W.

Aspergillus: Biology and industrial applications-(Biotechnology series)

I. Title II. Series

616,969

ISBN 0-7506-9124-7

Butterworth-Heinemann 80 Montvale Avenue Stoneham, MA 02180

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

BIOTECHNOLOGY

JULIAN E. DAVIES, Editor Pasteur Institute Paris, France

Editorial Board

L. Bogorad	Harvard University, Cambridge, USA
J. Brenchley	Pennsylvania State University, University Park, USA
P. Broda	University of Manchester Institute of Science and Tech-
	nology, Manchester, United Kingdom
A.L. Demain	Massachusetts Institute of Technology, Cambridge, USA
D.E. Eveleigh	Rutgers University, New Brunswick, USA
D.H. Gelfand	Cetus Corporation, Emeryville, California, USA
D.A. Hopwood	John Innes Institute, Norwich, United Kingdom
SD. Kung	University of Maryland, College Park, USA
JF. Martin	University of Leon, Leon, Spain
C. Nash	Schering-Plough Corporation, Bloomfield, New Jersey,
	USA
T. Noguchi	Suntory, Ltd., Tokyo, Japan
W. Reznikoff	University of Wisconsin, Madison, USA
R.L. Rodriguez	University of California, Davis, USA
A.H. Rose	University of Bath, Bath, United Kingdom
P. Valenzuela	Chiron, Inc., Emeryville, California, USA
D. Wang	Massachusetts Institute of Technology, Cambridge, USA

BIOTECHNOLOGY SERIES

1.	R. Saliwanchik	Legal Protection for Microbiological and Genetic Engineering Inventions
2.	L. Vining (editor)	Biochemistry and Genetic Regulation of Commercially Important Antibiotics
3.	K. Herrmann and R. Somerville (editors)	Amino Acids: Biosynthesis and Genetic Regulation
4.	D. Wise (editor)	Organic Chemicals from Biomass
5.	A. Laskin (editor)	Enzymes and Immobilized Cells in Biotechnology
6.	A. Demain and N. Solomon (editors)	Biology of Industrial Microorganisms
7.	Z. Vaněk and Z. Hošťálek (editors)	Overproduction of Microbial Metabolites: Strain Improvement and Process Control Strategies
8.	W. Reznikoff and L. Gold (editors)	Maximizing Gene Expression
9.	W. Thilly (editor)	Mammalian Cell Technology
10.	R. Rodriguez and D. Denhardt (editors)	Vectors: A Survey of Molecular Cloning Vectors and Their Uses
11.	SD. Kung and C. Arntzen (editors)	Plant Biotechnology
12.	D. Wise (editor)	Applied Biosensors
13.	P. Barr, A. Brake, and P. Valenzuela (editors)	Yeast Genetic Engineering

iv	Biotechnology Series	
14.	S. Narang (editor)	Protein Engineering: Approaches to the Manipulation of Protein Folding
15.	L. Ginzburg (editor)	Assessing Ecological Risks of Biotechnology
16.	N. First and F. Haseltine (editors)	Transgenic Animals
17.	C. Ho and D. Wang (editors)	Animal Cell Bioreactors
18.	I. Goldberg and J.S. Rokem (editors)	Biology of Methylotrophs
19.	J. Goldstein (editor)	Biotechnology of Blood
20.	R. Ellis (editor)	Vaccines: New Approaches to Immunological Problems
21.	D. Finkelstein and C. Ball (editors)	Biotechnology of Filamentous Fungi
22.	R. Doi and M. McGloughlin	Biology of Bacilli: Applications to Industry

Aspergillus: Biology and Industrial Applications

(editors)

23. J. Bennett and

M. Klich (editors)

CONTRIBUTORS

Randy M. Berka

Research & Development Genencor International South San Francisco, California

Jeannette M. Birmingham

Mycology and Botany
Department
American Type Culture
Collection
Rockville, Maryland

A. John Clutterbuck

Department of Genetics University of Glasgow Glasgow, Scotland

Medha Devchand

Allelix Biopharmaceuticals Inc. Mississauga, Ontario, Canada

Dennis M. Dixon

Department of Health, State of New York Albany, New York Present address: National Institutes of Health National Institute of Allergy and Infectious Diseases Bethesda, Maryland

Nigel Dunn-Coleman

Research & Development Genencor International South San Francisco, California

Katsuya Gomi

National Research Institute of Brewing Tokyo, Japan

David I. Gwynne

Cambridge NeuroScience Cambridge, Massachusetts

Shodo Hara

National Research Institute of Brewing Tokyo, Japan

Shung-Chang Jong

Mycology and Botany Department American Type Culture Collection Rockville, Maryland

Katsuhiko Kitamoto

National Research Institute of Brewing Tokyo, Japan

Maren A. Klich

USDA-ARS

Southern Regional Research Center New Orleans, Louisiana

George Knaphus

Department of Botany Iowa State University Ames, Iowa

Jiři Kominek

Institute of Biochemical
Technology and Microbiology
Technical University of Vienna
Vienna, Austria

Christian P. Kubicek

Institute of Biochemical Technology and Microbiology Technical University of Vienna Vienna, Austria

John E. Linz

Department of Food Science and Human Nutrition Michigan State University East Lansing, Michigan

VIII Contributors

Sylvia D. Martinelli

Pelham House Brent Pelham Buntingford, United Kingdom

Edward J. Mullaney

USDA-ARS Southern Regional Research Center New Orleans, Louisiana

Shantha Perera

Department of Applied Biology and Building College of Technology Brighton, United Kingdom

James J. Pestka

Department of Food Science and Human Nutrition Michigan State University East Lansing, Michigan

A.C. Pier

Department of Veterinary Sciences University of Wyoming Laramie, Wyoming

J.L. Richard

Mycotoxin Research Laboratory USDA-ARS Northern Regional Research Center Peoria, Illinois

Max Roehr

Institute of Biochemical
Technology and Microbiology
Technical University of Vienna
Vienna, Austria

Robert A. Samson

Centraalbureau Voor Schimmelcultures Baarn, The Netherlands

Claudio Scazzocchio

Institut de Génétique et Microbiologie Université Paris Sud, Centre d'Orsay Orsay, France

Michael G. Schechtman

Biotechnology, Biologics, and Environmental Protection USDA Animal and Plant Health Inspection Service Hyattsville, Maryland

Amina Sheikh (nee Zamir)

Genentec Inc. South San Francisco, California

Lois H. Tiffany

Department of Botany Iowa State University Ames, Iowa

Thomas J. Walsh

Infectious Disease National Cancer Institute Bethesda, Maryland

Michael Ward

Research & Development Genencor International South San Francisco, California

Lawrence N. Yager

Department of Biology Temple University Philadelphia, Pennsylvania

Aspergillus is a genus of asexual (anamorphic) molds, some members of which have sexual (teleomorphic) stages classified among the Ascomycetes. The taxon was first described in 1729 by Micheli, a Florentine priest-mycologist. The conidiophore that characterizes the genus consists of a long hyphal cell culminating in a globe-like spore-bearing structure. Micheli was reminded of the aspergillum, a liturgical device used to sprinkle holy water, hence the name.

Aspergilli are now recognized as some of the most widely distributed and abundant of living things. In addition to the major role they play in the natural world, their metabolic versatility has both positive and negative economic consequences for human commerce. They are major agents of decomposition and decay. The enzymes that facilitate their biodegradative activities can also be harnessed in food fermentations and industrial processes. Some aspergilli cause serious diseases (mycoses) or produce toxic metabolites (mycotoxins). Others are grown in controlled fermentations in order to harvest various small molecules of industrial importance (e.g., citric acid and lovastatin). Examples of medically and industrially important species include: A. flavus (aflatoxin production); A. fumigatus (etiological agent in aspergillosis); A. nidulans (model system for genetic studies); A. niger

XVi Preface

(citric acid production); and A. oryzae (saki and soy sauce production). A. niger and A. oryzae are both on the U.S. Food and Drug Administration "GRAS list" (generally regarded as safe).

As aspergilli are eukaryotic microbes capable of efficient secretion in liquid culture, modern biotechnologists have reevaluated the potential of these fungi as models for basic science as well as for cloning hosts in industrial fermentations. Advances in molecular biology have provided new approaches to old problems in plant and animal pathology; to selection of high-yielding industrial strains; to identification and control of decay organisms; and to basic studies in taxonomy, ecology, and physiology.

This book arose out of a chapter in an earlier book in the Butterworth-Heinemann Biotechnology Series entitled *Biology of Industrial Microorganisms*, edited by A.L. Demain and N. Solomon, which highlighted the diverse ways in which microorganisms have been used in biotechnology. We are grateful to Arny Demain for suggesting that the chapter on *Aspergillus* be expanded into an entire book. Additional thanks are due to Paul Bayman, Mia Molvray, and Toby Fiebelman for their stimulating discussions seasoned with generous doses of mycological humor. Gauri Radkur and Melissa Thorne gave superb help with revisions and manuscript preparations. Rose Glade provided months of cheerful and competent secretarial assistance. Just 5 days before we completed our editorial work, Ms. Glade was in a serious automobile accident so our pleasure in finishing the book is dampened because she is in the hospital and unable to celebrate with us.

John, Dan, and Mark Bennett provided filial encouragement, and Ed Mullaney could not have been more supportive during the double gestation. Last, but not least, we thank Gwen Mullaney for waiting.

J.W. Bennett M.A. Klich

CONTENTS

3
4
10
14
14
19
19
21
33
38
39

X Contents

3.		of of Gene Expression in the Catabolic Pathways of	
	Aspera	gillus nidulans: A Personal and Biased Account	43
	Claua	lio Scazzocchio	
	3.1	Narrow and Wide Domain Regulation: Statement of	
		the Problem	45
	3.2	Specific Regulatory Genes	46
	3.3	Is Nitrogen Metabolite Repression Mediated by a	
	0.0	Universal Transcription Factor?	52
	3.4	A Negative Acting Gene Product: Carbon Catabolite	32
	3.4	Repression	56
	3.5	Do Broad Domain Regulatory Genes Control the	30
	3.3		57
	2.0	Expression of Specific Regulators?	3 /
	3.6	Carbon and Nitrogen Metabolite Repression: How	
		Do They Interact?	58
	3.7	Do the Specific Regulatory Gene Products and the	
		areA Protein Interact Directly in a Transcription	
		Complex?	60
	3.8	Gene Clusters: Do They Have a Role?	62
	3.9	Conclusions	65
		References	6.5
4.		in Synthesis in Aspergillus nidulans	69
		a D. Martinelli, Shantha Perera, and Amina Sheikh	
	4.1	Background	70
	4.2	A Simple System for Protein Synthesis In Vitro and	
		Its Applications	75
	4.3	Summary	84
		References	8.5
PAI	RT II.	BIOTECHNOLOGY AND INDUSTRIAL	
		APPLICATIONS	
_	Indus	trial Acids and Other Small Malacular	0.
5.		strial Acids and Other Small Molecules	9
	223	Roehr, Christian P. Kubicek, and Jiři Kominek	
	5.1	Biochemical Foundations of Organic Acid Production	
		in Aspergillus	9
	5.2	Industrial Production Processes	106
		References	124
,	N	Development in Figure 1 Provided in Figure 1 Provid	
6.		Developments in Fermented Beverages and Foods	
		Aspergillus	133
		o Hara, Katsuhiko Kitamoto, and Katsuya Gomi	
	6.1	Koji: Characteristics of Solid-State Cultures of	
		Aspergillus	134

		Contents	xi
	6.2	Strain Improvement of Industrial Aspergillus Strains	
		by Mutagenesis and Protoplast Fusion	137
	6.3	Molecular Approaches for Breeding of Aspergillus	
		Strains	141
	6.4	Conclusions	151
		References	151
7.	Indust	rial Enzymes from Aspergillus Species	155
	Randy	M. Berka, Nigel Dunn-Coleman, and Michael Ward	
	7.1	Enzymes Used in Starch Processing	156
	7.2	Pectinolytic Enzymes	169
	7.3	Cellulases	174
	7.4	Hemicellulase/Xylanase	180
	7.5	Aspergillus Proteinases	181
	7.6	Lipase	186
	7.7	Catalase	187
	7.8	Glucose Oxidase	188
	7.9	Phytase	189
	7.10	Heterologous Expression of Industrial Enzymes in	
		Aspergillus	190
	7.11	Future Directions	194
		References	195
8.	Expres	ssion of Foreign Proteins in the Genus Aspergillus	203
	-	I. Gwynne and Medha Devchand	
	8.1	Hosts	204
	8.2	Expression Vectors	205
	8.3	Transformation	205
	8.4	Expression of Cloned Genes	208
	8.5	Optimization	211
	8.6	Future Developments	212
		References	213
PAF	RT III.	MYCOTOXICOLOGY AND PATHOGENESIS	
0	Mycot	oxins: Molecular Strategies for Control	217
7.		E. Linz and James J. Pestka	21/
	9.1	Immunochemical Assay of Aspergillus Toxins	218
	9.2	Molecular Biology of Mycotoxin Biosynthesis	223
	9.4	References	229
		10101011003	22)
10.		ses and Mycotoxicoses of Animals Caused by Aspergilli	233
		Pier and J.L. Richard	225
	10.1	Animal Infections Caused by Aspergilli	235
	10.2	Mycotoxicoses of Aspergillus Origin	240

XII	Contents

	10.3	Conclusion	246
		References	247
11.		Pathogenesis	249
		M. Dixon and Thomas J. Walsh	250
	11.1 11.2	Aspergilli Invasive Pulmonary Aspergillosis: Pathogenesis	254
	11.2	Disseminated Aspergillosis	257
	11.4	Aspergillus Sinusitis	258
	11.5	Cutaneous Aspergillosis	258
	11.6	Aspergillosis Associated with Other Underlying	200
	11.0	Conditions	259
	11.7	Aspergillosis in Immunocompetent Hosts	259
	11.8	Aspergillus Allergic and Saprophytic Diseases of	
		the Airways	261
		References	265
PAI	RT IV.	REGULATIONS, CULTURE COLLECTIONS,	
		AND PATENTS	
12.		States Government Regulations Affecting Aspergilli	
	LEASTER CONTROL	neir Products	271
		el G. Schechtman	272
	12.1	General Aspects of Relevant Federal Regulations	272
	12.2 12.3	Aspergillus: Who Regulates What? General Regulatory Issues	273 274
	12.3	Recombinant DNA Research in the Laboratory	214
	12.4	Involving Aspergillus	276
	12.5	Large-Scale Uses of Recombinant Aspergilli	277
	12.6	USDA Regulation	277
	12.7	EPA Regulation of Microorganisms	281
	12.8	Use of Aspergilli in Foods and in Food Processes	286
	12.9	FDA Regulation of Human Drugs and Biological	
		Products	290
		References	296
13.	Patent	Protection for Aspergillus-Related Inventions	297
	Shung-	Chang Jong and Jeannette M. Birmingham	
	13.1	Principles of the Patent System	298
	13.2	Patent Application	299
	13.3	Patenting in Biotechnology	301
	13.4	The Need to Deposit Biological Materials	302
	13.5	Aspergillus-Related Inventions in U.S. Patents	304
	13.6	Summary	306
		References	306

		Contents	xiii
14.	Culture	e Collections: Sources and Management of Aspergillus	
		es for Biotechnology	313
	Shung-	Chang Jong and Jeannette M. Birmingham	
	14.1	Culture Collections and Their Organization	314
	14.2	Culture Collection Resources	315
	14.3	Collection Services Provided	319
	14.4	Conclusion	324
		References	324
PAR	T V.	ECOLOGY AND TAXONOMY	
15.	Ecolog	y of the Aspergilli of Soils and Litter	329
		A. Klich, Lois H. Tiffany, and George Knaphus	
	15.1	Isolation Techniques for Verifying the Presence of	
		Aspergilli in Soil	330
	15.2	Environmental Factors Affecting Aspergillus in Soil	334
	15.3	Reported Occurrence of Aspergilli	341
	15.4	Conclusions	349
		References	350
16.	Curren	t Taxonomic Schemes of the Genus Aspergillus	
	and Its	Teleomorphs	355
	Robert	A. Samson	555
	16.1	History	358
	16.2	Methodologies Used in Identification and Systematics	359
	16.3	Teleomorph Associations	363
	16.4	Nomenclature	364
	16.5	Infrageneric Organization and Recent Research	366
	10.5	References	387
PAI	RT VI.	APPENDICES	
A.	Molec	ular Biology Supplies	393
		d J. Mullaney	373
	A.1	Vendors	393
		References	396
В.	Selecto	ed Media Used for Aspergilli	397
D.		A. Klich	371
	B.1	Aspergillus flavus/parasiticus Identification Media	397
	B.2	Aspergillus nidulans Complete Medium (CM)	398
	B.3	Czapek or Czapek-Dox Agar	399
	B.4	Dextrose-Peptone Agar	400
	B.5	Dextrose-Peptone Agar/Rose Bengal Agar	401
	B.6	Dichloran Glycerol Agar (DG18)	402

XIV	Contents	

B.7	Malt Extract Agar	402
B.8	Oatmeal Agar	402
B.9	Potato Dextrose Agar (PDA)	402
B.10	Sabouraud's Agar	403
B.11	Soil Extract Agar	403
B.12	Yeast Extract Sucrose Agar (YES)	403
	References	404
Index		405

Aspergillus as a Model System