


THE STATE OF THE WORLD'S LAND AND WATER RESOURCES FOR FOOD AND AGRICULTURE

Managing systems at risk

First published 2011 with FAO by Earthscan 2 Park Sq. Milton Park, Abingdon, OX14 4RN Simultaneously published in the US and Canada by Earthscan 711 Third Avenue, New York, NY 10017 Earthscan is an imprint of the Taylor & Francis group, an informa business

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

ISBN 978-1-84971-326-9 (hdk) ISBN 978-1-84971-327-6 (pbk) FAO ISBN: 978-92-5-106614-0 (pbk)

© FAO 2011

All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to copyright@fao.org or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.

Library of Congress Cataloging-in-Publication Data The state of the world's land and water resources for food and agriculture: managing systems at risk. -- 1st ed.

- p. cm.
- 1. Agricultural productivity. 2. Agricultural productivity--Water-supply.
- 3. Agricultural ecology. 4. Crops and climate. I. Earthscan. S494.5.P75S73 2011

338.1'6--dc23

2011027406

Recommended citation for this book:

FAO. 2011. The state of the world's land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.

Systems at risk are production systems where the land and water resources supporting agricultural production are constrained to a point where their capacity to meet current and future needs is seriously jeopardized. Constraints may be further exacerbated by unsustainable agricultural practices, social and economic pressures and the impact of climate change.

Cover design: Food and Agriculture Organization of the United Nations

Cover photos: FAO Mediabase, Hugh Turral

Foreword

This edition of *The State of the World's Land and Water Resources for Food and Agriculture* (SOLAW) fills an important thematic gap in FAO's flagship publication series, and presents objective and comprehensive information and analyses on the current state, trends and challenges facing two of the most important agricultural production factors: land and water.

Land and water resources are central to agriculture and rural development, and are intrinsically linked to global challenges of food insecurity and poverty, climate change adaptation and mitigation, as well as degradation and depletion of natural resources that affect the livelihoods of millions of rural people across the world.

Current projections indicate that world population will increase from 6.9 billion people today to 9.1 billion in 2050. In addition, economic progress, notably in the emerging countries, translates into increased demand for food and diversified diets. World food demand will surge as a result, and it is projected that food production will increase by 70 percent in the world and by 100 percent in the developing countries. Yet both land and water resources, the basis of our food production, are finite and already under heavy stress, and future agricultural production will need to be more productive and more sustainable at the same time.

A major objective of this publication is thus to build awareness of the status of land and water resources, and inform on related opportunities and challenges. Across the years, FAO has established itself as a unique source for a variety of global data on land and water. These data have been fully exploited in the preparation of this book, presenting the most comprehensive and up-to-date global overview of the availability of land and water resources, their use and management, as well as related future trends and developments. This further takes into consideration major drivers of global change, including demands driven by demographics, changing consumption patterns, biofuel production and climate change impacts.

The variety of situations that characterize the world's agricultural landscapes is at the core of SOLAW. It identifies geographic zones with high population densities, where rainfed and irrigated crop production systems are under increasing pressure and are at heightened risk of reaching limits to increased production and productivities. These 'systems at risk' are drawn to the attention of the global community for concerted and timely remedial intervention, including through investments and inter-

national cooperation, not only on a global scale but locally, where the consequences of lack of action on agricultural livelihoods are likely to be greatest.

SOLAW also highlights the essential but often understated contribution that appropriate policies, institutions and investments make in assuring equitable access to resources and their sustainable and productive management, while assuring acceptable levels of economic development. It also discusses options and strategies for addressing evolving issues such as water scarcity and land degradation.

SOLAW contains numerous examples of successful actions undertaken in various parts of the world, which illustrate the multiple options available that are potentially replicable elsewhere. The necessary planning and negotiating mechanisms for doing so are highlighted. Given increasing competition for land and water resources, choices of options inevitably require stakeholders to evaluate trade-offs among a variety of ecosystem goods and services. This knowledge would serve to mobilize political will, priority setting and policy-oriented remedial actions, at the highest decision-making levels.

Jacques Diouf

Director-General

Food and Agriculture Organization

of the United Nations (FAO)

Preface

Feeding a growing population

Land and water resources and the way they are used are central to the challenge of improving food security across the world. Demographic pressures, climate change, and the increased competition for land and water are likely to increase vulnerability to food insecurity, particularly in Africa and Asia. The challenge of providing sufficient food for everyone worldwide has never been greater.

The world's population continues to rise. Today's population of around 7 billion is expected to increase to about 9 billion by 2050 (United Nations, 2009). By this time, another one billion tonnes of cereals and 200 million extra tonnes of livestock products will need to be produced every year (Bruinsma, 2009). The imperative for such agricultural growth is strongest in developing countries, where the challenge is not just to produce food but to ensure that families have access that will bring them food security.

Today almost 1 billion people are undernourished, particularly in Sub-Saharan Africa (239 million) and Asia (578 million). In developing countries, even if agricultural production doubles by 2050, one person in twenty still risks being undernourished – equivalent to 370 million hungry people, most of whom will again be in Africa and Asia. Such growth would imply agriculture remaining an engine of growth, vital to economic development, environmental services and central to rural poverty reduction.

For nutrition to improve and for food insecurity and undernourishment to recede, future agricultural production will have to rise faster than population growth. This will have to occur largely on existing agricultural land. Improvements will thus have to come from sustainable intensification that makes effective use of land and water resources as well as not causing them harm.

The policies, practices and technologies needed to boost production and strengthen food security have long been discussed. Institutional mechanisms, the development of trade and markets and the financial facilities needed to raise productivity in a sustainable way have been negotiated at the international level. At national level, measures to raise output and strengthen food security are being put in place, including investment in pro-poor, market-friendly policies, institutions and incentives, as well as the infrastructure and services needed to improve productivity. Yet the challenge still remains.

Increased competition for land and water

And there are warning signs. Rates of growth in agricultural production have been slowing, and are only half the 3 percent annual rate of growth seen in developing countries in the past. In 2007 and 2008, any complacency was jolted by food price shocks, as grain prices soared. Since then, the growing competition for land and water are now thrown into stark relief as sovereign and commercial investors begin to acquire tracts of farmland in developing countries. Production of feedstock for biofuels competes with food production on significant areas of prime cultivated land. A series of high profile floods, droughts and landslides further threaten the stability of land and water resources.

Deeper structural problems have also become apparent in the natural resource base. Water scarcity is growing. Salinization and pollution of water courses and bodies, and degradation of water-related ecosystems are rising. In many large rivers, only 5 percent of former water volumes remain in-stream, and some rivers such as the Huang He no longer reach the sea year-round. Large lakes and inland seas have shrunk, and half the wetlands of Europe and North America no longer exist. Runoff from eroding soils is filling reservoirs, reducing hydropower and water supply. Groundwater is being pumped intensively overpumped and aquifers are becoming increasingly polluted and salinized in some coastal areas. Large parts of all continents are experiencing high rates of ecosystem impairment, particularly reduced soil quality, biodiversity loss, and harm to amenity and cultural heritage values.

Agriculture is now a major contributor to greenhouse gases, accounting for 13.5 percent of global greenhouse gas emissions (IPCC, 2007). At the same time, climate change brings an increase in risk and unpredictability for farmers – from warming and related aridity, from shifts in rainfall patterns, and from the growing incidence of extreme weather events. Poor farmers in low income countries are the most vulnerable and the least able to adapt to these changes.

The steady increase in inland aquaculture also contributes to the competition for land and water resources: the average annual per capita supply of food fish from aquaculture for human consumption has increased at an average rate of 6.6 percent per year between 1970 and 2008 (FAO 2010a), leading to increase demand in feed, water and land for the construction of fish ponds.

The deteriorating trends in the capacities of ecosystems to provide vital goods and services are already affecting the production potential of important food-producing zones. If these continue, impacts on food security will be greatest in developing countries, where both water and soil nutrients are least abundant. Yet in some locations, better technology, management practices and policies (which take into consideration the need for appropriate tradeoffs between environmental needs and agricultural

production) have arrested and reversed negative trends and thus indicate pathways towards models of sustainable intensification. The risks, however, are considerable. On present trends, a series of major land and water systems and the food outputs they produce are at risk.

Scope of the book

This book deals primarily with the issue of land and water for crops. It examines the kinds of production responses needed to meet demand. It also assesses the potential of the world's land and water resources to support these desired increases in output and productivity. Risks and tradeoffs are examined, and options reviewed for managing these without harm to the resource base.

While the use of land and water for forestry and livestock is briefly discussed in Chapter 1, these subjects have been addressed in greater detail in two earlier FAO reports to which the reader is referred: *The State of the World's Forests* (FAO, 2009a) and *The State of Food and Agriculture* (FAO, 2009b). Similarly, more detailed analyses of trends and challenges on inland fisheries and aquaculture are provided in the recent FAO, report *The State of World Fisheries and Aquaculture* (FAO, 2010a). These global reports are supplemented by comprehensive analysis of gender in agriculture in FAO and World Bank reports (FAO, 2011a; World Bank, 2009b).

Chapter 1 analyses the current status of land and water resources together with trends. It assesses the biophysical and technical aspects of the resources and their use, and presents projections for the year 2050. Chapter 2 reviews current institutional arrangements, and assesses socio-economic and environmental impacts of current land and water management. Chapter 3 reviews current and future threats to land and water and their implications for a series of major systems at risk. Chapter 4 examines requirements and options to achieve the necessary levels of output and productivity required in a sustainable way. Chapter 5 assesses the institutional responses at local, national and international levels, with an analysis of lessons for the future. Finally, Chapter 6 draws conclusions and advances policy recommendations. These centre on the pragmatic step by step approaches towards a new paradigm of more sustainable, lower-carbon intensive agricultural production, based on more ecologically-sensitive management of land and water by farmers, supported by policies, institutions and incentives from national governments and the global community.

Acknowledgements

The preparation of the SOLAW report has benefited from the support and input of a number of individuals and specialized institutions:

Conceptualization and overall supervision: P. Koohafkan.

Coordination: H. George.

SOLAW Preparation core group: H. George, J-M. Faurès, J. Burke, N. Forlano, F. Nachtergaele, P. Groppo, S. Bunning, P. Koohafkan and P. Steduto.

External reviewers and advisers: H. P. Binswanger, R. Conant, P. Mahler, R. Stewart and R. Brinkman.

Summary report writing team: C. S. Ward (independent consultant) and J. Pretty (University of Essex).

Preparation and review of thematic reports and SOLAW chapters:

D. Bartley, C. Batello, M. Bernardi, R. Biancalani, H. P. Binswanger, J. Bonnal, J. Bruinsma, S. Bunning, J. Burke, C. Casarotto, N. Cenacchi, M. Cluff, R. Cumani, J. De la Cruz, C. De Young, O. Dubois, T. Facon, J. M. Faurès, N. Forlano, G. Franceschini, K. Frenken, T. Friedrich, A. Fynn, J. Gault, H. George, P. Gerber, P. Grassini, P. Groppo, T. Hofer, J. Hoogeveen, B. Huddleston, W. Klemm, P.K. Koohafkan, R. Lal, D. Lantieri, J. Latham, C. Licona Manzur, L. Lipper, M. Loyche-Wilkie, J. Mateo-Sagasta, P. Mathieu, G. Munoz, F. Nachtergaele, C. Neely, D. Palmer, M. Petri, T. Price, T. Robinson, S. Rose, M. Salman, V. Sadras, S. Schlingloff, P. Steduto, L. Stravato, P. Tallah, L. Thiombiano, J. Tranberg, F. Tubiello, J. Valbo-Jorgensen and M. van der Velde.

Institutions involved in the preparation of the thematic reports:

- IIASA (International Institute for Applied Systems Analysis) G. Fischer, E. Hizsnyik, S. Prieler and D. A. Wiberg.
- IFPRI (International Food Policy Research Institute) R. Meinzen-Dick,
 E. Nkonya and C. Ringler.
- IIED (International Institute for Environment and Development) L. Cotula.

- CDE (Centre for Development and Environment, University of Berne) –
 G. Schwilch, C. Hauert and H. Liniger.
- University of Bonn, Germany/University of Frankfurt S. Siebert.
- Geodata Institute (University of Southampton).
- AGTER (Association the Governance of Land, Water and Natural Resources).

Preparation of statistics and maps: K. Frenken, H. George, J. M. Faurès, J. Hoogeveen, L. Peiser, M. Marinelli, M. Petri and L. Simeone, with assistance from R. Biancalani, J. Latham and R. Cumani.

SOLAW website: H. George, L. Peiser and S. Giaccio, with assistance from G. Lanzarone, M. Fani, D. Lanzi, M. Marinelli, B. Mukunyora, F. Snijders and K. Sullivan.

Publishing arrangements and graphic design: N. Forlano, R. Tucker and J. Morgan, with assistance from G. Zanolli, M. Umena and P. Mander.

Secretarial assistance: M. Finka.

List of abbreviations

AEZ agro-ecological zoning

AGTER Association for the Governance of Land, Water

and Natural Resources

AgWA Partnership for Agricultural Water in Africa

APFAMGS Andhra Pradesh Farmer Managed Groundwater Systems
AQUASTAT FAO's global information system on water and agriculture

ARID Association Régionale de l'Irrigation et du Drainage

en Afrique de l'Ouest et du Centre (West Africa)

ASEAN Association of Southeast Asian Nations

AU African Union

CA conservation agriculture

CAADP Comprehensive Africa Agriculture

Development Programme

CBD United Nations Convention on Biological Diversity

CBO community-based organization
CCX Chicago Climate Exchange

CDE Centre for Development and Environment

CDM Clean Development Mechanism

CEC cation exchange capacity

CEOS Committee on Earth Observation Satellites

CGIAR Consultative Group on International Agricultural Research

DFID UK Department for International Development

EIA environmental impact assessments

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

ENSO El Niño southern oscillation
ESA European Space Agency

EU European Union

FAO Food and Agriculture Organization of the United Nations

FAOSTAT FAO statistical database
FCT Forest Carbon Tracking Task
FDI foreign direct investment

FIVIMS Food Insecurity and Vulnerability Information

and Mapping Systems

FLO Fairtrade Labelling Organizations International

GAEZ Global Agro-Ecological Zones
GEF Global Environment Facility
GEO Group on Earth Observations

GEOSS Global Earth Observation System of Systems

GHG greenhouse gas

GIAHS Globally Important Agricultural Heritage Sites

GIS geographical information system

GIZ Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) GmbH

GLADIS Global Land Degradation Information System

GLASOD Global Assessment of Soil Degradation
GTOS Global Terrestrial Observing System

GWP Global Water Partnership

HASHI Hifadhi Ardhi Shinyanga (Shinyanga Land Rehabilitation

Programme, Tanzania)

IDA International Development Association (World Bank)

IEA International Energy Agency

IFAD International Fund for Agricultural Development

IFPRI International Food Policy Research Institute

IIASA International Institute for Applied Systems Analysis

IIED International Institute for Environment and Development

IMAWESA Improved Management of Agricultural Water

in Eastern and Southern Africa

IMT irrigation management transfer
INM integrated nutrient management
IPM integrated pest management

IPCC Intergovernmental Panel on Climate Change

IPPC Integrated Pollution and Prevention Control (Directive)

IRWR internal renewable water resources

IWMI International Water Management Institute
LADA Land Degradation Assessment in Drylands

LCBC Lake Chad Basin Commission
LIFDC low-income food-deficit countries

M&E monitoring and evaluation

MASSCOTE Mapping System and Services for Canal

Operation Techniques

MDG Millennium Development Goal
MEA Millennium Ecosystem Assessment

MICCA Mitigation of Climate Change in Agriculture

NGO non-governmental organization

NPK nitrogen, phosphorus, potassium (fertilizer)

OAS Organization of American States
ODA official development assistance

OECD Organisation for Economic Co-operation

and Development

List of abbreviations xv

PES payment for environmental services
PIM participatory irrigation management

PNTD participatory and negotiated territorial development

PPP public-private partnership
PRA participatory rural appraisal

PRODEBALT Lake Chad Basin Sustainable Development Program

RAE Rehabilitation of Arid Environments
REDD+ Reducing Emissions from Deforestation

and Forest Degradation and the enhancement

and conservation of forest carbon stocks and sustainable

management of forests in developing countries

SADC Southern African Development Community
SARIA Southern Africa Regional Irrigation Association

SLM sustainable land management

SLWM sustainable land and water management
SNIF National Land Reclamation Society (Romania)
SOLAW State of the World's Land and Water Resources

for Food and Agriculture

SRI system of rice intensification

UNCCD United Nations Convention to Combat Desertification
UNCTAD United Nations Conference on Trade and Development

UNDP United Nations Development Programme
UNEP United Nations Environment Programme

UNFCCC United Nations Framework Convention on Climate Change
UN-REDD United Nations Collaborative Programme on Reducing

Emissions from Deforestation and Forest Degradation

in Developing Countries

WFD Water Framework Directive (EU)

WFP World Food Programme

WOCAT World Overview of Conservation Approaches

and Technologies

WTO World Trade Organization
WUA water user association

WWAP World Water Assessment Programme

WWC World Water Council

List of tables

Table 1.1:	Regional distribution of main land use categories (2000)	21
Table 1.2:	Net changes in major land use (mha)	24
Table 1.3:	Share of world cultivated land suitable for cropping under appropriate production systems	25
Table 1.4:	Water withdrawal by major water use sector (2003)	27
Table 1.5:	Types of rainfed systems	30
Table 1.6:	Distribution of cultivated land by classes of soil quality rating of natural nutrient availability	34
Table 1.7:	Estimated yield gaps (percentage of potential) for cereals, roots and tubers, pulses, sugar crops, oil crops and vegetables combined	37
Table 1.8:	Area equipped for irrigation (percentage of cultivated land and part irrigated groundwater)	38
Table 1.9:	Annual long-term average renewable water resources and irrigation water withdrawal	42
Table 1.10:	Shares of irrigated land and share of irrigated cereal production in total cereal production (2006)	44
Table 1.11:	Regional zonation of pastoral systems	49
Table 1.12:	Historical and projected growth in cereal production	53
Table 1.13:	Projected growth in agricultural production: most likely outcomes	53
Table 1.14:	Area equipped for irrigation projected to 2050	55
Table 1.15:	Annual long-term average renewable water resources and irrigation water withdrawal, 2006, 2050	57
Table 1.16:	Global availability and quality of land resources suitable for crop production (value in brackets excludes land with protection status)	59
Table 2.1:	Public expenditure in agriculture in selected developing countries 1980–2002	90
Table 2.2:	Estimated inward fdi stock, by sector and industry, 1990 and 2004 (million US\$)	91
Table 2.3:	Projected investment needs over the period 2005–7 to 2050 in billion 2009 US\$	94

List of tables xvii

Table 2.4:	Regional distribution of projected investments in crop production 2005–7 to 2050	94
Table 3.1:	Annual anthropogenic greenhouse gas emissions (2005)	119
Table 3.2:	Major food-producing countries dependent on groundwater	120
Table 3.3:	Major land and water systems at risk (a broad typology)	124
Table 4.1:	Mitigation potential in agriculture and forestry in 2030	172
Table 5.1:	Indicative trends in the distribution of costs and benefits of various technologies or practices	183
Table 5.2:	International programmes for data generation, harmonization and sharing	200
Table 5.3:	Selected regional cooperation efforts on land and water management	202
Table 5.4:	Virtual water trade of selected countries	207
Table 6.1:	Technical and institutional responses to support improved land and water management	220

List of boxes

Box 1.1:	How suitability of land for cultivation is assessed	26
Box 1.2:	Conversion of pasture to cultivation in north africa, the near east and the mediterranean	48
Box 1.3:	Fodder grasses for feed and fuel for energy	50
Box 2.1:	Conflict, adaptive capacity and a shifting equilibrium in Yemen's Wadi Dahr	75
Box 2.2:	European union water framework directive	80
Box 2.3:	Watershed management effects on the water cycle	83
Box 2.4:	Irrigation management transfer experience: operation and maintenance in Romania	85
Box 2.5:	The impact of distorted incentives on land and water management	88
Box 2.6:	How overall policies can influence sustainable land management	88
Box 2.7:	Watershed rehabilitation in the loess plateau of China's Yellow River basin	89
Box 2.8:	Land deals in developing countries	92
Box 2.9:	Desertification: the challenges of land and water in drylands and the unccd response	95
Box 3.1:	Trends in liquid biofuel demand and production	107
Box 3.2:	Loss of natural forests in Latin America and the Caribbean	109
Box 3.3:	The main characteristics of the fao-lada framework	110
Box 3.4:	National land degradation assessment, Senegal	111
Box 3.5:	Nutrient depletion in small-scale cropping systems in sub-Saharan Africa	115
Box 3.6:	Anticipated impacts on production potential of cereals	122
Box 4.1:	Fertilizer trees – a success	143
Box 4.2:	Integrated soil fertility management	145
Box 4.3:	Rainwater harvesting	146
Box 4.4:	Vegetative strips	147
Box 4.5:	Structural barriers	148
Box 4.6:	Silvopastoralism, shinyanga, tanzania	151
	1	