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Preface

There has been a good deal of research activity, and organization of confer-
ences, AMS Special Sessions etc. in the areas of Noncommutative Ring Theory,
Representation Theory and Diagram Algebras throughout the world.

The 2006 - International Conference in Chennai, India on Noncommutative
Rings, Group Rings, Diagram Algebras and their applications brought together
experts from these fields and provided them with opportunities to share their re-
search and learn from one another. This conference was jointly organized by the
Ramanujan Institute for Advanced Study in Mathematics, University of Madras
and the Center of Ring Theory and Applications, Ohio University on the campus
of the University of Madras, Chennai, India during December 18-22, 2006. The
main speakers in the conference included A. Facchini, T. Y. Lam, A. Leroy, J. M.
Osterburg, I. B. S. Passi, D. S. Passman, Mercedes Siles, L. Small, J. B. Srivastava,
V. S. Sunder, J. Szigeti, N. Vanaja, K. Varadarajan, H. Wenzl, R. Wisbauer, C. C.
Xi, A. V. Yakovlev.

The social highlights of the conference featured a classical group dance by
the members of the Sanchala School of Bharathanatyam, Chennai followed by a
conference banquet. A guided tour to historical places such as Mahabalipuram and
Kanchipuram was arranged.

We would like to thank all of the invited speakers as well as all of the contrib-
utors to the Proceedings. Our special thanks are due to Prof. D. S. Passman for
his inaugural address. The papers that were submitted for the Proceedings have
been rigorously refereed and the ones that were accepted by the referees form the
contents of this volume. We would like to thank the referees for their thorough and
meticulous screening of the papers.

We are grateful to the University Grants Commission, India for funding the
conference through its Special Assistance Program, National Board of Higher Math-
ematics, Mumbai, Tamil Nadu State Council for Higher Education, Chennai, Uni-
versity of Madras, Ohio University, Athens and other sponsors for their financial
support.

We also wish to express our appreciation to the Patrons Dr. S. Ramachandran
Vice Chancellor, University of Madras and the President Roderick McDavis, Ohio
University for their inspiration and support. Our thanks go to all of the students,
staff and faculty at the Ramanujan institute, and the members of the organizing
committee in Chennai, India, and in Athens, USA for their help in all possible
ways to make this conference a success. In particular, we would like to express our
appreciation to Mr. B. Sivakumar and Ms. A. Tamilselvi for their help in several
ways with the running of the conference and the publication of these proceedings.
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Last but not least, we are grateful to the staff of the American Mathematical
Society for their outstanding work in producing these Proceedings. Special thanks
are due, in particular, to Ms. Christine Thivierge for her promptness in dealing
with any matter and apprising the editors about the technical details from the start
to the end.

S. K. Jain
S. Parvathi
Editors
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Injective modules, spectral categories, and applications

Alberto Facchini

ABSTRACT. This paper is mainly a survey of results that appear in [FH],
[GaO] and [Goo2] about singular modules, injective modules, spectral cat-
egories and their applications, but the paper also contains some original re-
sults. For instance, we compute the derived functors of the canonical functor
P of a Grothendieck category A into its spectral category Spec A (Proposi-
tion 2.2). We determine some properties of the category A’ obtained from a
Grothendieck category A by formally inverting all superfluous epimorphisms
(Section 4). The construction of the category A’ is the dual construction to
the construction of spectral category due to Gabriel and Oberst [GaO]. For
example, we show that the category A’ is an additive category with cokernels,
but without kernels in general.

1. Introduction and first elementary examples

In this paper, all modules are unital right modules over a fixed associative ring R
with identity 1 # 0. Let Mod-R be the category of all unital right R-modules.

For any right R-module Ag, we shall denote by E(ARg) the injective envelope
of Ag. We all know that E(—) cannot be seen as a functor, but we “tend to consider
it” a functor of Mod-R into Mod-R, because we can associate to any object Ag
of Mod-R the object E(Ag) of Mod-R and to any morphism f: Agp — Bp an
extension E(f): E(Agr) — E(Bg). In trying to construct a functor in this way, we
met with a number of difficulties. The first difficulty is that the injective envelope
is defined only up to isomorphism. Even if we are already inside a fixed injective
module Er, a submodule Ar of Ex can have different injective envelopes in Ep.

EXAMPLE 1.1. Let R be the ring Z of integers and Q the R-module of rational
numbers. Let ¢: Q — Q/2Z denote the canonical projection and i: Q — Q the
identity mapping. Consider the submodule Ag = 2Z@0 of the R-module QeQ/2Z.
Since, over R = Z, homomorphic images of injective modules are injective modules,
the images of the two morphisms (i,¢): Q — Q & Q/2Z and (i,0): Q - Q& Q/2Z

2000 Mathematics Subject Classification. Primary 16D40, 16D50; Secondary 16E50, 18G10,
18E25.

Key words and phrases. Injective module, spectral category.

Partially supported by Ministero dell’Universita e della Ricerca (Prin 2005 “Perspectives in
the theory of rings, Hopf algebras and categories of modules”), by Gruppo Nazionale Strutture
Algebriche e Geometriche e loro Applicazioni of Istituto Nazionale di Alta Matematica, and by
Universita di Padova (Progetto di Ateneo CDPA048343 “Decomposition and tilting theory in
modules, derived and cluster categories”).



2 ALBERTO FACCHINI

are two injective envelopes of the module Ag, both contained in the same module

Q@& Q/2Z.

Moreover, the extension E(f): F(Agr) — E(Bg) of a given morphism f: Ap —
Bp, is not unique’.

EXAMPLE 1.2. Let p be a prime and let R be the ring Z/p?Z, which is a
self-injective ring. Then multiplication by 1 + p and the identity are two different
endomorphisms of Rr that extend the identity pZ/p?’Z — pZ/p?Z of the socle
of RR.

Hence, there is no guarantee that E(g)E(f) = F(gf) when we have morphisms
f+Agr — Br and g: Bgr — Cg. A better, more complete, result is the following:

PROPOSITION 1.3. [Goo2, Proposition 1.12] There does not exist a functor
F': Mod-Z — Mod-Z
such that F(A) = E(A) for all abelian groups Az.

Notice that, in this proposition, F' need not even be an additive functor. More
generally, if R is a commutative integral domain which is not a field, there does
not exist a functor F': Mod-R — Mod-R such that F(Ag) = E(Ag) for all right
R-modules Ar [Goo2, Exercise 6, p. 25].

Let us recall some standard terminology and elementary properties, which also
can be found in [Goo2|. This terminology and these properties concern singular
modules and nonsingular modules, which will be necessary in the sequel. For any
module Ag, the singular submodule of Ag is Z(Agr) = {z € Ag | anng(z) is essen-
tial in Rp }. The module A is singular provided Z(Ag) = Ag, and is nonsingular
provided Z(Ag) = 0. Then Z: Mod-R — Mod-R turns out to be a subfunctor of
the identity functor Mod-R — Mod-R. The functor Z: Mod-R — Mod-R is an
idempotent, left exact functor, but the pair consisting of the class of all singular R-
modules and the class of all nonsingular R-modules is not a torsion theory, because
Z(AR/Z(AR)) can be different from 0 for suitable R-modules Ag. If we want a tor-
sion theory, instead of Z we need Zy, defined by Z(Ar)/Z(Ar) = Z(Ar/Z(AR))
for every R-module Ag. Then there is a torsion theory whose torsion modules are
all R-modules Ag with Z5(Agr) = Ag, and whose torsion-free modules are exactly
all nonsingular modules.

Here is a list of elementary properties of singular modules and nonsingular
modules:

(1) A module Ag is singular if and only if there exists a module Bg with
an essential submodule Cr such that Ap = Bg/Cr [Goo2, Proposi-
tion 1.20(b)].

(2) Injective envelopes of nonsingular modules are nonsingular modules.

(3) If f: A — Bg is a homomorphism and Bpg is nonsingular, then the
extension of f to the injective envelopes is unique, that is, there is a

1We could fix an injective envelope F(AR) for each module Agr. Notice that in this case we
would be making a class of choices. We all know that the axiom of choice is equivalent to Zorn’s
Lemma, to the well ordering principle, and so on. But for these equivalent statements we deal
with a set of choices, with the existence of maximal elements in a partially ordered set, with well
ordering a set. But if we chose an injective envelope for every module, we make a class of choices.
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unique homomorphism E(f): E(Ag) — E(Br) making the diagram

Ag  Is  Bp
1 !
BE(4r) ™ E(Bg)

commute. Here the vertical arrows are the embeddings of the modules in
their injective envelope.

(Let us see the proof of (3). The module E(A)/A is singular by Property (1), and
E(B) is nonsingular by (2). Hence Hom(E(A)/A, E(B)) = 0, so that applying the
exact functor Hom(—, E(B)) to the exact sequence 0 — A — E(A) — E(A)/A — 0,
we get the exact sequence 0 — Hom(E(A), E(B)) — Hom(A, E(B)) — 0. In other
words, every homomorphism A — FE(B) extends to a homomorphism E(A) —
E(B) in a unique way. In particular, this is true for homomorphisms A — B.)

A corollary of Property (3) is the following fact. We know that if A is a
submodule of an injective module E, then E contains an injective envelope of A,
and this injective envelope of A is a direct summand of E. If A is a submodule of a
nonsingular injective module E, then E contains a unique injective envelope of A,
i.e., there is a unique direct summand of F in which A is an essential submodule.

Let us try to find some possible solutions to the problem that injective envelope
E(—): Mod-R — Mod-R is not a functor.

A first solution can be found specializing the ring, that is, restricting our at-
tention to special rings:

PROPOSITION 1.4. [Goo2, Exercise 24, p. 48] Let R be a ring such that all
singular right R-modules are injective. Then there exists an additive functor F':
Mod-R — Mod-R such that F(A) = E(A) for all Ag.

The functor F in the statement of Proposition 1.4 is defined by F(A4) = Z (Ao
5°A for every right R-module 4 and F(f) = f]| z(4) DS f for every homomorphism
f: Ar — Bpg. Here S° is the localization functor associated with the singular
torsion theory, so that S°A = E(A/Z(A)).

Rings over which all singular right modules are injective were studied and
completely characterized by Goodearl [Gool]. An example of a commutative ring
R over which all singular modules are injective is the ring R := 1F + FN) C pN,
Here F is a field, FN is the direct product of countable many copies of F, that
is, the ring of all functions N — F, and R is the subring of FN consisting of all
functions N — F that are constant almost everywhere (ie., a function a: N — F
is in R if and only if there exist a finite subset ' of N and an element a € F such
that a(z) = a for every z € N\ F.)

A second solution to our problem of “trying to force E(-) to become a functor”
is given by specializing the modules, that is, passing to a full subcategory of Mod-R.
Let NS(R) be the full subcategory of Mod-R whose objects are all nonsingular right
R-modules. Then E(—): NS(R) — Mod-R is a functor by Property (3) above.

A third possible solution is changing the morphisms, that is, changing the
category. In the next Section we will analyze this situation.



4 ALBERTO FACCHINI

2. The spectral category of a Grothendieck category
Let R be a ring. Assume that we have an additive functor “injective envelope”
E(-): Mod-R — C
for a suitable category C. Then:

(1) in order that our notation may have a meaning, C must be an (additive)
category whose class of objects contains all injective right R-modules,
(2) for every injective R-module Ag, we want that E(Ag) = AR,
(3) for every R-module Ag, the embedding Agr — E(Ag) in Mod-R must go
to its natural extension E(Ag) — E(Ag), which is the identity morphism
Therefore, let P: Mod-R — C be an additive functor and assume that

(1) C is an additive category whose class of objects contains all injective right
R-modules,
(2) for every right R-module Ar, P(Ag) = E(Ag) (in particular, P(Ag) =
AR for every injective right R-module Ag.)
(3) For every R-module Ag, the functor P sends the embedding Ar — E(AR)
to the identity morphism 1p(4,) of P(Ag).
Under these hypotheses, let f: Ag — Bpg be an essential monomorphism in
Mod-R. Then there is a commutative square

Ag L5 By
! l
E(Ar) % E(Bg)

in Mod-R, where the extension g of f is an isomorphism, so that when we apply
the functor P we get a commutative square

P(Ar) = E(Ar) ) P(Bp) = E(Bg)

lpcap | L 1pp)
P(g)

P(Ar) = E(Ar) —> P(BR)= E(Bg)
in C, and P(g) is an isomorphism in C, so that P(f) also must be an isomorphism
in C. Therefore any functor P: Mod-R — C with the three properties (1), (2)
and (3) must send every essential monomorphism of Mod-R to an isomorphism of
C. Hence the idea in order to force injective envelope to become a functor is the
following: we must invert essential monomorphisms. And, luckily, this is sufficient,
as we shall see in the rest of this section.

Let C be the category obtained from Mod-R formally inverting the essen-
tial monomorphisms of Mod-R. When we say “formally inverting the essential
monomorphisms of Mod-R”, we mean a construction very similar to the construc-
tion of the ring of fractions RS™' = {fs™! | f € R,s € S} of a commutative
ring R with respect to a multiplicative closed subset S of R. In that case, we have
a commutative ring R, a multiplicatively closed subset S of R, we consider the
cartesian product R x S = {(f,s) | f € R,s € S} and the equivalence relation
~ on R x S defined by (f,s) ~ (f',s') if there exists a t € S with fs't = f/st,
we construct the factor set RS™! := R x S/ ~, denote its elements, that is, the
equivalence classes of the pairs (f,s), as fs~!, and give RS~! a ring structure, in
which the elements of S have become invertible. Thus we have formally inverted the
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elements of S in the sense that we have constructed from R the “smallest ring RS—1
containing R” in which the elements of S are now invertible. (In fact, the new ring
RS~ does not necessarily contain R, there is only a ring morphism R — RS™1!,
and it is the smallest one in the sense that it has the suitable universal property.)
Now we follow the same construction, but instead of considering the ring R and its
multiplicatively closed subset S, we consider the class of all morphisms in Mod-R
and its multiplicatively closed subclass of all essential monomorphisms. We thus
construct the category whose objects are all right R-modules and whose morphisms
AR — Bp are the “fractions” fs~!, where f: Ay — Bp is an arbitrary morphism
in Mod-R, and s: A — Apg is an essential monomorphism.

This can be done, more generally, for any Grothendieck category A [GaO], so
that we will present the construction for any such category and not only for the
category Mod-R. Recall that a Grothendieck category is an abelian category with
exact direct limits and a generator. Let .4 be a Grothendieck category. For any
object A of A, the set of the essential subobjects of A is downwards directed, because
A" <. Aand A” <., Aimply A’NA” <, A. Here we have written A’ <¢ A to denote
the fact that A’ is an essential subobject of A. Therefore if we fix another object B
of A and apply the contravariant functor Hom A(—, B) to the inclusions A’ — A",
where A" <, A, A” <, A and A’ C A", we get an upwards directed set of abelian
group morphisms Hom 4 (A", B) — Hom 4(A’, B). Thus we can construct the direct
limit lim Hom 4(A’, B), where A’ ranges in the set of all essential subobjects of A.
Let Spec.A be the category with the same objects as A and, for objects A and B of
A, with Homgpe. 4(A, B) = lim Hom 4 (A, B) (A’ <. A). Then Spec A turns out
to be a Grothendieck category is which every object is injective [GaO, Satz 1.3].
It is called the spectral category of A. More generally, a category is spectral if it is a
Grothendieck category in which every object is injective. See [GaO] or [St, Ch. V,
§7]. The next Proposition characterizes spectral categories.

PROPOSITION 2.1. ([GaO, Satz 2.1], [GooB, Theorem 1.14]) For any ring R,
the full subcategory NSI(R) of Mod-R whose objects are all nonsingular injective
right R-modules is a spectral category.

Conversely, if A is a spectral category, let U be a generator of A and R :=
Hom4(U,U) the endomorphism ring of U. Then R is a Von Neumann regular,
right self-injective ring, and A is equivalent to NSI(R).

For any Grothendieck category A, there is a canonical functor P: A — Spec A
which is the identity on objects, takes f € Hom 4 (A, B) to its canonical image in
HomspecA(A,B), and has the three properties (1), (2) and (3). In other words,
changing the category, F(—) has become a functor Mod-R — Spec Mod-R.

Spectral categories go back to Gabriel and Oberst [GaO], that is, to the sixties.
Though their construction appears in some books, it does not seem to have had
many applications. Searching MathSciNet for “spectral categories”, we find that
spectral categories are presently cited in less than twenty papers. The next Section
will be devoted to describing further applications of spectral categories.

Let us compute the right derived functors of the functor P: A —s Spec A. Let A
be a Grothendieck category. The functor P: 4 — Spec A is a left exact, covariant,
additive functor and every object in the Grothendieck category Spec A is injective
and projective. Notice that every Grothendieck category is a category with injective
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envelopes (see, for instance, [P, Theorem 3.10.10]). Thus it is possible to define
the right derived functors of P (see, for instance, [Gr, p. 143]). Notice that every
object A of A has a minimal injective resolution 0 - A — Ey — E; — FE9 — .. ..

PROPOSITION 2.2. Let P(™ denote the n-th right derived functor of P. Then
P™M(A) = P(E,) for every n > 0.

PrOOF. The minimal injective resolution

2.1) 043 g 0, p b p b

is the exact sequence defined inductively in the following way. Let E_; = A and let
d_1: E_1 — Ejp be an injective envelope of E_;. Assume that §,_1: E,_1 — E,
has been defined for some n > 0. The morphism §,,: E, — E,; is the composite
morphism of the canonical epimorphism F,, — coker d,_1 and an injective envelope
cokerd, 1 — FE,yy of cokerd,_;. In particular, the image of §,, is essential in
E, 1 for every n > —1. As (2.1) is exact, we get that the kernel of On+1: Bpy1 —
E,+2 is essential, so that P(6,41): P(Ep41) — P(En2) is the zero morphism for
every n > —1. Hence, the P(”)(A)’s are the cohomology groups of the complex
0 — P(Ey) — P(E1) - P(E;) -% ..., so that P(")(4) = P(E,) for every
n > 0. O

COROLLARY 2.3. For a module A, PtV (A) = 0 if and only if A has injective
dimension < n.

PROOF. This follows from the fact that, for a module E, P(E) = 0 if and only
if £=0. O

3. Applications of spectral categories

Let R and S be rings. A ring morphism ¢: R — S is said to be local if, for
every r € R, ¢(r) invertible in S implies r invertible in R. We will denote by
J(R) the Jacobson radical of the ring R. A ring R is called semilocal if R/J(R)
is a semisimple artinian ring. Semilocal rings can be characterized in a number of
ways. In the next two results we recall some of these characterizations.

THEOREM 3.1 (Camps and Dicks [CD]). A ring R is semilocal if and only if
there exists a local morphism of R into a semilocal ring, if and only if there exists
a local morphism of R into a semisimple artinian ring.

Now recall that the notion of Goldie dimension is a notion of lattice theory.
Let (L,V,A) be a modular lattice with 0 and 1, that is, a lattice with a smallest
element 0 and a greatest element 1 such that aA(bVc) = (aAb) Ve for every a,b,c € L
with ¢ < a. A finite subset {a; | i € I'} of L\ {0} is said to be join-independent if
ai A (V4 aj) = 0 for every i € I. The empty subset of L\ {0} is join-independent.
A modular lattice L with 0 and 1 is said to be of Goldie dimension n, where n > 0
is an integer, if n is the greatest of the cardinalities of the finite subsets of L that
are join-independent [F1, Section 2.6]. A modular lattice is said to be of finite
Goldie dimension if it has Goldie dimension n for some n > 0, otherwise it is said
to be of infinite Goldie dimension.

We can apply these notions to the lattice £L(Mg) of all submodules of a mod-
ule Mg. If the lattice L(Mpg) has finite Goldie dimension n, then n will be said to
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be the Goldie dimension dim(Mg) of the module Mg, otherwise Mg will be said
to be of infinite Goldie dimension.

If (L, Vv, A) is a modular lattice, then its dual lattice (L, A, V) is also a modular
lattice. The Goldie dimension of the dual lattice of the lattice £L(Mpg) of all sub-
modules of a module My, is called the dual Goldie dimension of Mg. It is denoted
by codim(MEg).

PROPOSITION 3.2. The following conditions are equivalent for a ring R.

(1) The ring R is semilocal.
(2) The right R-module Rp has finite dual Goldie dimension.
(3) The left R-module rR has finite dual Goldie dimension.

Moreover, if these equivalent conditions hold,
codim(Rg) = codim(gR) = dim(R/J(R)).

Modules whose endomorphism ring is semilocal have good decomposition prop-
erties, for instance they cancel from direct sums (if AR, Br, Cg are modules over a
ring R, End(Ag) is semilocal and Ar @ Br = Ap @ CRr, then Br = Cg), have the
n-th root property (if Ar, Br are modules over a ring R, End(Ag) is semilocal, n
is a positive integer and A} = B7%, then Ap = Bgr), have only finitely many direct
summands up to isomorphism, etc. [F1, Section 4.2]. For instance, let’s prove, as
an exercise, the following Proposition.

PROPOSITION 3.3. Let R — S be a ring morphism, and let Mg be an S-module
with End(Mpg) semilocal. Then End(Mg) is semilocal.

PROOF. The module Mg is an R-module My in a natural way via the ring
morphism R — S, and there is an embedding End(Ms) — End(Mpg), because
every S-endomorphism of M is an R-endomorphism a fortiori. This embedding
End(Ms) — End(Mpg) is a local morphism, because every S-endomorphism of Mg
which is an R-automorphism of Mg (i.e., is bijective) is also an S-automorphism
of Mg. |

Being semilocal is a finiteness condition on rings, and having a semilocal en-
domorphism ring is a finiteness condition on modules. Modules with a semilocal
endomorphism ring have a regular geometric behavior as far as their direct sum-
mands are concerned [F2].

The rest of this Section will be devoted to presenting some applications of the
properties of the functor P to the study of objects A of a Grothendieck category A
with a semilocal endomorphism ring End 4 (A). The applications we present are
taken from [FH].

Any additive functor F of a preadditive category A into a preadditive cat-
egory B induces a ring morphism End4(A4) — Endg(F(A)) for every object A
of A. This happens, in particular, when A is a Grothendieck category, B is
the spectral category of A and F is the canonical functor P of A into Spec A.
Thus, for every object A of a Grothendieck category A, there is a ring morphism
pa: End4(A) — EndSpecA(A) induced by the functor P: A — Spec A.

An object A of a Grothendieck category A is said to be directly finite if it is
not isomorphic to a proper direct summand of itself, that is, if A® B = A implies
B =0 for any object B of A.
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PROPOSITION 3.4. [FH, Proposition 4.3] Let A be an object in a Grothendieck
category A such that every monomorphism A — A is an isomorphism. Then
pa: Endy(A) — EndSpecA(A) s a local morphism. Conversely, if ¢4 is a lo-
cal morphism and E(A) is directly finite, then every monomorphism A — A is an
isomorphism.

LEMMA 3.5. If an object A of a Grothendieck category A has finite Goldie di-
mension n, then P(A) is a semisimple object of composition length n in the spectral
category Spec A, and EndSpecA(A) s a semisimple artinian ring.

From Theorem 3.1 and Proposition 3.4 we get the following result, which was
first proved by Rosa Camps and Warren Dicks [CD]:

COROLLARY 3.6. Endomorphism rings of artinian modules are semilocal.

More generally, if A is an object of finite Goldie dimension in a Grothendieck
category A and every monomorphism A — A is an isomorphism, then the endo-
morphism ring End 4(A) is semilocal.

We say that an object A of a Grothendieck category A is finitely copresented
if there exists an exact sequence 0 — A — Ly — Li — 0 where Lg is injective
and both Ly and L; are of finite Goldie dimension. It is possible to prove [FH,
Section 5] that for every finitely copresented object A, there is a local morphism
x: End4(4) — Endgpec 4(4) X Endgpec 4(L1)- It is defined as follows: given
J € End4(A), x maps f to (P(f), P(f1), where fi: L1 — L; is any morphism
making the following diagram commute:

0 — A — Ly — Ly — 0

Lf l fo J i
0 — A — Ly — Ly — 0.

Here fo: Lo — Lo is any extension of f: A — A to the injective object Ly of A
containing A.

COROLLARY 3.7. The endomorphism ring of a finitely copresented object A of
a Grothendieck category A is semilocal. More precisely, if A is finitely copresented
and Lo is its injective envelope, then codim(End 4(A)) < dim(A) + dim(Lg/A).

The last two results of this Section generalize two theorems proved by Warfield.
Warfield proved in [W, Theorem 5.2] that if R is a semilocal commutative principal
ideal domain and S is an R-algebra that is torsion-free and of finite rank as an R-
module, then S is a semilocal ring. This can be extended to the following;:

COROLLARY 3.8. [FH, Corollary 5.9] Let R be a commutative noetherian semilo-
cal domain of Krull dimension 1 and let S be an R-algebra. Let Ag be an S-module
that is torsion-free of finite rank as an R-module. Then End(Ag) is semilocal.

Recall that an R-module A is uniserial if, for any submodules B and C of A,
we have B C C or C' C B, and a module is serial if it is a direct sum of uniserial
modules. Thus a module is serial of finite Goldie dimension if and only if it is a
direct sum of finitely many uniserial modules, and a commutative integral domain
R is a valuation domain if and only if Ry is a uniserial module. Warfield W,
Theorem 5.4] proved that if R is a commutative valuation domain and S is an R-
algebra that is torsion-free and of finite rank as an R-module, then S is a semilocal
ring. This can be extended to the following:



