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Foreword

The Harbrace College Mathematics Series has been undertaken‘in re-
sponse to the growing demands for flexibility in college mathematics
curricula. This series of concise, single-topic textbooks is designed to serve
two primary purposes: First, to provide basic undergraduate text materi-
als in compact, coordinated units. Second, to make available a variety
of supplementary textbooks covering single topics.

To carry out these aims, the series editors and the publisher have
selected as the foundation of the series a sequence of six textbooks cover-
ing functions, calculus, linear algebra, multivariate calculus, theory of
functions, and theory of functions of several variables. Complementing
this sequence-are a number of other volumes on such topies as probability,
statistics, differential equations, topology, differential geometry, and
complex functions.

By permitting more flexibility ih the construction of courses and
course sequences, this series should encourage diversity and individuality
in curricular patterns. Furthermore, if an instructor wishes to devise his
own topical sequence for a course, the Harbrace College Mathematics
Series provides him with a set of books built around a.flexible pattern
from which he may choose the elements of his new arrangement. Or,
if an instructor wishes to supplement a full-sized textbook, this series
provides him with a group of compact treatments of individual topics.

An additional and novel feature of the Harbrace Mathematics Series 1§'
its continuing adaptability. As new topics gain emphasis in the curricula
or as promising new treatments appear, books will be added to the series
or existing volumes will be revised. In this way, we will meet the changing
demands of the instruction of mathematics with both speed and flexibility.

SALOMON BOCHNER
W. G. LISTER



Preface

This textbook is designed to introduce advanced undergraduate or
beginning graduate students to algebraic topology as painlessly as pos-
sible. The principal topics treated are 2-dimensional manifolds, the
fundamental group, and covering spaces, plus the group theory needed
in these topics. The only prerequisites are some group theory, such as
that normally contained in an undergraduate ,algebra course on the
junior-senior level, and a one-semester undergraduate course in general
topology.

The topics discussed in this book are “standard” in the sense that
several well-known textbooks and treatises devote a few sections or a
chapter to them. This, I believe, is the first textbook giving a straight-
forward treatment of these topics, stripped of all unnecessary definitions,
terminology, etc., and with numerous examples and exercises, thus making
them intelligible to advanced undergraduate students.

The subject matter is used in several branches of mathematics other
than algebraic topology, such as differential geometry, the theory of Lie
groups, the theory of Riemann surfaces, or knot theory. In the develop-
ment of the theory, there is a nice interplay between algebra and topology
which causes each to reinforce interpretations of the other. Such an
interplay between different topics of mathematics breaks down the often
artificial subdivision of mathematics into different “branches” and
emphasizes the essential unity of all mathematics.

Undoubtedly some éxperts will be shocked that a textbook purporting
to be an introduetion to algebraic topology does not even mention
homology theory. It is certainly true that homology and cohomology
theory form the core of algebraic topology. However, it is difficult to
motivate the student who is learning these subjects for the first time, and
their systematic treatment requires the patient development of a great
deal of machinery. Only after several months of classroomslectures and
study can interesting applications be given which show that the develop-
ment of all the machinery was worthwhile. For these reasons, I believe
that it is easier for the student to understand and appreciate homology
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viii / PREFACE

theory after he has studied the fundamental group and allied topics
presented in this book.

To those with a strictly logical mind, Chapter I, which discusses
2-dimensional manifolds, will perhaps seem the least rigorous part of the
book. There certainly would be no real problem in giving a strictly
rigorous treatment of this subject matter. However, such a treatment
would be rather dull and tedious, with long-winded proofs of facts that
are visually obvious. Moreover, the results of Chapter I are not basic to
the main theorems in the rest of the book; rather, they furnish examples,
illustrations, and applications of the results of the later chapters.

Chapter II gives the definition and basic properties of the fundamental
group and the homomorphism induced by a continuous map. General
methods for determining the structure of the fundamental group of a
space are developed later, in Chapter IV, after certain essential group-
theoretic notions have been introduced in Chapter III.

In Chapters III and IV the characterization of certain mathematical
structures as the solutions of ‘“‘universal mapping problems’ is emphasized
for two different reasons. First, it seems that the most efficient method
of determining the structure of the fundamental group of a wide variety
of spaces is by use of the Seifert-Van Kampen theorem (Chapter 1V); the
best formulation of this essential theorem involves the notion of a uni-
versal mapping problem. Second, this method of characterizing various
mathematical structures as solutions to universal mapping problems
seems to be one of the truly unifying mathematical principles to have
emerged since 1945, and it should be brought into the mathematics
turriculum as early as possible.

Chapter V contains a rather thorough discussion of covering spaces.
The relationship between covering spaces and the fundamental group is
emphasized throughout.

In Chapters VI and VII are given topological proofs of several well-
known theorems of group theory, especially the Nielsen-Schreier theorem
on subgroups of a free group, the Kurosh theorem on subgroups of a free
product, and the Grushko theorem on the decomposition of a finitely
generated group as a free product. These theorems belong to a section of
group theory whose original development was largely motivated by
combinatorial topology. I believe that the proofs of these theorems using
the fundamental groups and covering spaces of certain low-dimensional
complexes are more easily comprehended than the purely algebraic proofs.
I hope the unified treatment of these theorems by these essentially
geometric methods will make this section of group theory less formidable
and more readily accessible.

Chapter VIII is rather brief and of a strictly descriptive nature; no
theorems are proved. Its purpose is to help the student make the transi-
tion to the study of more advanced topics in algebraic topology.
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Although triangulations of 2-manifolds are used in Chapter I, and the
CW-complexes of J. H. C. Whitehead are introduced in the last chapter,
there is no systematic treatment of simplicial complexes in this book.
This may surprise some readers in view of the fact that many treatises on
algebraic topology start off with just such a discussion. However, it is
difficult to see how it could have materially simplified the exposition.
Moreover, it is my personal opinion that any such discussion must of
necessity be rather dull. One of the tendencies of algebraic topology
during the last fifteen years or so has been the replacement of simplicial
complexes by CW-complexes as the main object of study.

The sections listed below are not absolutely necessary to the further
developments of the theory, and they can be omitted completely or given
less emphasis in a briefer course or on a first reading of the book:

Chapter I, Sections 9-13.
Chapter II, Sections 7 and 8.
Chapter 111, Section 7.
Chapter 1V, Section 6.
Chapter V, Sections 10-12.
Chapter VI, Section 8.
Chapter VII, Sections 5 and 6.

Also, a briefer course could be built around the material in the first five
chapters, omitting the same sections.

This book has developed from lectures given at Yale University to
both graduate and undergraduate students over a period of several years.
It is a pleasure to acknowledge my indebtedness to these students. Their
questions, criticisms, and suggestions have given me many insights. I am
also deeply indebted to my colleagues for many discussions of the ideas
presented in this book. Most of the theorems and definitions in this book
may be found in well-known textbooks or articles in mathematical
journals. In this regard, special mention must be made of the following
German textbooks: B. Kerekjarto, Topologie (Springer, 1923); K. Reide-
meister, Einfiihrung in die Kombinalorische Topologie (Teubner, 1932),
H. Seifert and W. Threlfall, Lehrbuch der Topologie (Vieweg, 1934). In
many cases I have tried to indicate the person or persons to whom I
thought an idea or theorem should be credited. However, in a subject
such as this, whose development spans most of the past century and which
has been the joint work of many mathematicians in many countries, it is
inevitable that I have committed some errors in assigning credit. To
those whose names have been inadvertently omitted, I apologize; I trust
that they will be understanding.

W. S. MASSEY
New Haven, Connecticut



Note to the Student

Prerequisites This book assumes that the student knows ecnough
group theory to understand such standard terms as group, subgroup,
normal subgroup, homomorphism, quotient group, coset, abelian group,
and cyclic group. Moreover, it is hopied that he has seen enough examples
and  has worked enough exercises to have some feeling for the true
significance of these concepts. An appendix on permutation and trans-
formation groups is supplied for the benefit of those who are unfamiliar
with this topic. Most of the additional topies needed in group theory
are developed in the text, especially in Chapter T11.

The necessary background in point set topology can be obtained from
a one-semester undergraduate course in the subject. Because most text-
hooks for such a course either treat the subject very briefly or omit it
entirely, a short discussion of quotient spaces isappended. No knowledge
of any branch of algebra other than group theory is needed; in particular,
nothing is used from the theory of rings, fields, modules, or vector spaces.

Terminology and notation Since most terminology and notation
is standard in contemporary mathematics books on this level, little
explanation is needed. In group theory, all groups (with a few standard
exceptions, such as the additive group of integers) are written multi-
plicatively, not additively. A homomorphism from one group to another
is called an epimorphism if it is onto, a monomorphism if it is one-to-one
(i.e., the kernel contains only the identity), and an isomorphism if it is
both one-to-one and onto. A diagram of groups and homomorphisms,
such as .

/

o




xii / NOTE TO THE STUDENT

is said to be commutative if all possible homomorphisms from one group
to another in the diagram are equal. In the above diagram, there are two
homomorphisms from group A to group D, namely, ¢f (i.e., f followed by
g) and f’g’. Thus, requiring that this diagram be commutative is equiva-
lent to requiring that gf = f’g’. Note that the requirement that a diagram
be commutative has nothing to do with whether or not any of the groups
involved is commutative or abelian. For example, the above diagram
could be commutative even if A, B, C, and D were non-abelien groups.

In set theory, the notation

I S:
i€l

denotes the product (or cartesian product) of the family of sets S;, 7 € I.
An element z of the cartesian product is a function that assigns to each
index 7 € I an element z; € S;. The element x; € S; is also called the
coordinate of the element x corresponding to the index 7 € I.

If A is a subset of B, then there is a uniquely defined inclusion map of
A into B: It assigns to each element * € A the element z itself. In sym-
bols, if 7: A — B denotes the inclusion map, then #(z) = z for any’
r € A. If C isanother set and f : B — C is any function from B to (', then
f| A denotes the restriction of f to the subset A; i.e., for any a € A,
(f| A)(a) = fa) €C.

The following notation is fixed throughout the book:

Z = set of all integers, positive and negative.

Q = set of all rational numbers.

R = set of all real numbers.

C = set of all complex numbers.
The notation R» (respectively, Cr) for any integer n ; 0 denotes the set
of all n-tuples (z1, ..., x,) of real (respectively, complex) numbers; R»
is the Euclidean n-space and has its usual topology. If z = (21, ... , z,)

is a point of R», then the norm or absolute value of z, denoted by |z|, is
defined as usual:

ol = ( 5, sy

With this notation, we define the following standard subsets of Euclidean
n-space for any n > 0:

Er = {z € Rn:|z| £ 14,
Ur = {z e R 2] < 1},
S+t = {z e R |z = 1}.
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These spaces are called the closed n-dimensional disc or ball, the open
n-dimensional disc or ball,and the (n — 1)-dimensional sphere, respectively.
Each is topologized as a subset of R». The same names are sometimes
applied to any topological space homeomorphic to one of the spaces just
mentioned.

If @ and b are real numbers such that a < b, then the following
standard notation is used for the open and closed intervals with a and b
as end points:

(a, b) {:céR:a<;z:<b},

la, 8]
(a,b) = {r€R:a <z = b}.

{freR:a £z £ b},

We say two spaces are of the same topological type if they are homeo-
morphiec. .

References A reference to Theorem or Lemma III. 8.4 indicates
Theorem or Lemma 4 in Section 8 of Chapter III; if the reference is.
simply to Theorem 8.4, then the theorem is in Section 8 of the same
chapter in which the reference occurs.

At the end of each chapter is a brief bibliography. Numbers in square
brackets in the text refer to items in the bibliography.

On studying this book The exercises and examples are an integral
part of the text; without them it would be much more difficult to gain an
“understanding of the subject. Many assertions are made without proof,
and the details of certain proofs are omitted. Regwrd the filling in of the
missing details as an exercise that tests whether you really understand
the ideas involved.

Remember that the path from ignorance to knowledge in any subject
is not straight and true, but is almost always rather zigzagged. One seems
to learn things by a method of successive approximations to the truth.
Thus, the first attempt to master some of the more difficult theorems in
this book is not likely to be completely successful. However, do not give
up. Rather, proceed with the study of the exercises and examples and
some of the later material, confident that your perseverance will be
rewarded with a deeper understanding of the ideas involved.
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CHAPTER ONE

Two-Dimensiona.l Manifolds .

1 " Introduction

The topological concept of a surface or 2-dimensional manifold is a
mathematical abstraction of the familiar concept of a surface made of
paper, sheet metal, plastic, or some other thin material. A surface or
2-dimensional manifold is a topological space with the same local prop-
erties as the famjliar plane of Euclidean geometry. An intelligent bug
crawling on a surface could not distinguish it from a plane if he had a
limited range of visibility.

The natural, higher dimensional analog of a surface is an n-dimen-
sional mamfold, which is a topological space with the same local prop-
erties as Euclidean n-space. Because they occur frequently and have
application in many other branches of mathematics, manifolds are cer-
tainly one of the most important classes of topological spaces. Although
we define and give some examples of n-dimensional manifolds for any
positive integer n, we devote most of this chapter to the case n = 2.
Because there is a classification theorem for. compact 2-manifolds, our
knowledge of 2-dimensional manifolds is incomparably more complete
than our knowledge of the higher dimensional cases. This classification
theorem gives a simple procedure for obtaining all possible compact
2-manifolds. Moreover, there are simple computable invariants which
enable us to decide whether or not any twe compact 2-manifolds are
homeomorphic. This may be considered an ideal theorem. Much research
in topology has been directed toward the development of analogous
classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown
that we cannot even hope for such a complete result for n-manifolds,
n = 4. Nevertheless, the theory of higher dimensional manifolds is cur-
rently a very active field of mathematical research, and will probably
continue to be so for a long time to come.

We shall use the material developed in this chapter, especially in
Sections 1-8, later in the book.
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2 Definition and examples of n-manifolds

Assume n is a positive integer. An n-dimensional manifold is a Hausdorff
space (i.c., a space that satisfies the 7'y separation axiom) such that each
point has an open neighborhood homeomorphic to the open n-dimensional
disc U ( = {z € R* : |z| < 1}). Usually we shall say “n-manifold” for
short.

Examples

2.1 Euclidean n-space R» is obviously an n-dimensional manifold. We can
easily prove that the unit n-dimensional sphere

St = {z e R 2| = ‘1}

is an n-manifold. For the point z = (1, 0, ..., 0), the set {(z), ..., Zup1) €
S» :z; > 0} is a neighborhood with the required properties, as we see by orthogo-
nal projection on the hyperplane in R**! defined by z, = 0. For any other point

z € S, there is a rotation carrying z into the point (1, 0, ..., 0). Such a rotation
is a homeomorphism of S onto itself; hence, z also has the required kind of
neighborhood.

2.2 If Mr is any n-dimensional manifold, then any open subset of M™ is also
an n-dimensional manifold. The proof is imntediate.

2.3 If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M X N is an (m + n)-dimensional manifold. This
follows from the fact that Um X U» is homeomorphic to U™+, To prove this,
note that, for any positive integer k, U* is homeomorphic to R¥, and R™ X R" is
homeomorphic to Rm+»,

In addition to the 2-sphere S2, the reader can easily give examples
of many other subsets of Euclidean 3-space R?3, which are 2-manifolds,
e.g., surfaces of revolution, ete.

As these examples show, an n-manifold may be either connected or
disconnected, compact or noncompact. In any case, an n-manifold is
always locally compact.

What is not so obvious is that a connected manifold need not satisfy
the second axiom of countability (i.e., it need not have a countable base).
The simplest example is the “long line.”! Such manifolds are usually
regarded as pathological, and we shall restrict our attention to manifolds
with' a countable base.

Note that in our definition we required that a manifold satisfy the
Hausdorff separation axiom. We must make this requirement explicit

1 See Geuerai Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955. Exer-
cise L, p. 164. .



