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Preface

The goal of the book is to lead the reader to an understanding of recent results on
the Inverse Galois Problem: The construction of Galois extensions of the ratio-
nal field Q with certain prescribed Galois groups. Assuming only a knowledge
of elementary algebra and complex analysis, we develop the necessary back-
ground from topology (Chapter 4: covering space theory), Riemann surface
theory (Chapters 5 and 6), and number theory (Chapter 1: Hilbert’s irreducibil-
ity theorem). Classical results like Riemann’s existence theorem and Hilbert’s
irreducibility theorem are proved in full, and applied in our context. The idea of
rigidity is the basic underlying principle for the described construction methods
for Galois extensions of Q.

From the work of Galois it emerged that an algebraic equation f (x) = 0, say
over the rationals, is solvable by radicals if and only if the associated Galois
group G ¢ is a solvable group. As a consequence, the general equation of degree
n > 5 cannot be solved by radicals because the group S, is not solvable.

This idea of encoding algebraic—arithmetic information in terms of group
theory was the beginning of both Galois theory and group theory. Nowadays
we learn basic Galois theory in every first-year algebra course. It has become
one of the guiding principles of algebra. One aspect of the theory that remains
unsatisfactory is the fact that it is very hard to compute the Galois group of
a given polynomial. Therefore, the full correspondence between equations of
degree n and subgroups of S, can only be worked out for very small values of n.
Since it is probably impossible to get a full understanding of this correspondence
for general n, one is naturally led to the following more reasonable question: Do
at least all subgroups of S,, occur in this correspondence, that is, does every sub-
group of S, correspond to some equation of degree n? The most important case is
that of irreducible equations, which correspond to the transitive subgroups of S,..

This question is one formulation of the Inverse Problem of Galois Theory.
It is often just called the Inverse Galois Problem. Hilbert was the first to study

xiii



Xiv Preface

this problem. His irreducibility theorem shows that it suffices to realize groups
as Galois groups over the function field Q(x). This allows us to use meth-
ods from Riemann surface theory and algebraic geometry. Hilbert applied his
method to obtain Galois realizations of the symmetric and alternating groups.
The next milestone was Shafarevich’s realization of all solvable groups over Q
(in the 1950s). His approach is purely number-theoretic, and does not extend
to nonsolvable groups.

The classification of finite simple groups, completed around 1980, gave a
new direction to the work on the Inverse Galois Problem. It now seemed natu-
ral to concentrate first on the simple groups, and get the composite groups later
by some kind of inductive procedure. It is not yet clear how this inductive pro-
cedure — or embedding problem, in technical terms — would work in general.
There are, however, quite a few results in this direction, for example, Serre’s ob-
struction theory for central extensions and Matzat’s notion of GAR-realization
for extensions with centerless kernel. The latter works best if one wants to real-
ize Galois groups over the full cyclotomic field Q,,,, instead of over Q (because
all embedding problems over Q,, with abelian kernel are solvable). If every
nonabelian finite simple group has a GAR-realization over Q,;,(x), then the
Inverse Galois Problem has a positive solution over Q,,. Moreover, the lattice
of all algebraic extensions of Q,;, would then be known. In technical terms, the
absolute Galois group of Q,, would be a free profinite group of countable rank.
The latter is known as Shafarevich’s conjecture. We will describe the notion
of GAR-realization — a Galois realization with particular extra properties — and
the related notions of GAL-realization and GAP-realization in Chapter 8.

The above justifies focusing on the simple groups, more generally, on al-
most simple groups (i.e., groups between a simple group and its automorphism
group). That is what the main body of this book is about. It uses the geometric
approach of Hilbert, coupled with the idea of rigidity (as Thompson called
it). The rigidity criterion (in its various versions) gives purely group-theoretic
conditions that force a finite group to occur as a Galois group over Q (actually
over every hilbertian field of characteristic 0). It is generally believed to have
been found independently by Belyi, Matzat, and Thompson in the early 1980s.
But it should be remarked that it is contained implicitly as a special case in
earlier work of Fried ([Fr1] 1977).

The elementary level of our approach is the main difference between this
and existing books on the subject by Matzat [Mal] and Serre [Sel], and the
forthcoming book [MM] by Malle and Matzat, which give a much higher level
presentation. It has not been my goal to state each result in its greatest generality;
rather I have tried to give an introduction to the various ideas involved in the
subject. Accordingly, there is no claim for completeness. Omissions include the
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theory of nonsplit abelian embedding problems and the construction of rigid
triples in Lie type groups. For a quite complete description of the known results
on the Inverse Galois Problem we refer the reader to [MM]. The same holds true
for tracing the origin of results — I have tried to attribute proper credit where it
seemed appropriate, but again there is no claim for completeness.

Another related topic that is not touched here is the problem of constructing
explicit polynomials with a given Galois group. There are quite a few results
on this, notably polynomials over Q found by Malle, Matzat, and others, often
with the aid of a computer, see [Mal], [Malle2]. More recently, Abhyankar
[Abh2] has found infinite series of polynomials in positive characteristic with
various classical groups as Galois groups.

One particular simplification in the first part of the book is that we avoid
the descent from C to Q (usually done by Weil’s descent theory), by a sim-
ple trick involving Hilbert’s irreducibility theorem. This descent is needed in
the second part of the book, however, and we present it in Chapter 7, using
the Bertini-Noether Lemma. Further, we avoid the technicalities necessary
to introduce profinite groups, and phrase everything in terms of finite Galois
extensions. Thus it is hoped that now celebrated results — like Thompson’s re-
alization of the monster group — become accessible to a wider mathematical
audience.

More recent approaches, based on the earlier work of Fried, try to replace the
rigidity conditions by the use of moduli spaces and the braid group action. An
introduction to this is given in Chapters 9 and 10. We cannot give a full treatment
of this theory because it requires deeper methods of algebraic geometry and
several complex variables. More important, this theory is still very much in the
process of being shaped, connecting, for example, to recent work of Drinfeld,
Thara, and others on the Grothendieck-Teichmiiller group, work of Fried on
modular towers, and other topics. In addition, the extension to the generalized
braid groups introduced by Brieskorn (and possibly other fundamental groups)
is yet to be developed.

To keep in line with the main theme of this book — the idea of rigidity —
Chapters 9 and 10 show how the braid group action on generating systems
naturally arises from the study of weak rigidity. We derive the resulting Outer
Rigidity Criterion using the higher-dimensional version of Riemann’s existence
theorem (which we cannot prove here).

Finally, Chapter 11 gives an introduction to Harbater’s patching method.
It is essentially independent of the rest of the book. The idea is to imitate
the analytic theory of Chapters 4 to 6 for base fields other than the complex
numbers. Complex analysis is replaced by ultrametric analysis, which works
over any field that is complete with respect to an ultrametric absolute value.
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Actually, for our approach very little is required from ultrametric analysis, and
we develop it in the first two sections. Riemann’s existence theorem does not
generalize in its full strength, but certain substitutes are obtained (that also hold
over fields of positive characteristic). Results include the solution of the Inverse
Galois Problem over the fields Q, (x) (where Q, is the p-adic field) and a proof
of the “geometric case of Shafarevich’s conjecture.”

The first part of the book (Chapters 1 to 6) gives a full proof of the basic rigid-
ity criteria for the realization of groups as Galois groups. Chapter 1 (Hilbert’s
irreducibility theorem) is essentially independent of the rest (except for some
very basic definitions and lemmas), in the methods as well as in the results.
Chapter 1 gives the logical foundation for the other chapters, however; they
are concerned with realizing groups G over Q(xy, ..., x,), whereas Chapter 1
shows that then G also occurs as a Galois group over Q. The first two sections
of Chapter 1 suffice for this conclusion. On a first reading, it may be advisable
to skip Chapter 1 and take Hilbert’s irreducibility theorem for granted.

Chapter 2 formulates the algebraic version of Riemann’s existence theorem
and draws some corollaries. Chapter 3 derives the rigidity criterion and gives
applications. Chapter 4 is purely topological. It is applied in Chapter 5 to reduce
the algebraic version of Riemann’s existence theorem to the analytic version.
The analytic version is proved in Chapter 6.

The exposition in the second part of the book (especially Chapters 9 and 10)
proceeds at a faster pace, whereas I have taken care to keep the first part quite
elementary. The first part could be used for a one-semester course for second
year graduate students.

This book grew out of notes taken by Ralph Frisch during a course I gave
at Erlangen in the summer of 1991. I thank Ralph for his enthusiasm and
diligence. Thanks for long years of encouragement, beginning with my first
steps in mathematics, are due to Karl Strambach, my teacher and friend. I
thank M. Jarden and H. Matzat for long-term invitations to the Institute for
Advanced Studies in Jerusalem and to the IWR at the University of Heidelberg,
respectively. Further, I thank G. Malle and P. Miiller for a critical reading of parts
of the manuscript. I acknowledge various remarks and discussions from several
colleagues, in particular the above-mentioned and W.-D. Geyer, D. Haran, K.
Magaard, J.-P. Serre, J. Thompson, and M. van der Put. Above all, I want
to express my deep indebtedness to Mike Fried who introduced me to this
exciting area, and in countless conversations and e-mail messages has shared
his profound knowledge freely with me.

Helmut Volklein Gainesville



Notation

We let N, Z, Q, R, and C denote the set of natural numbers and integers, and
the field of rational, real, and complex numbers, respectively.

For G agroup, Aut(G) (resp., Inn(G)) denotes its automorphism group (resp.,
group of inner automorphisms). Z(G) denotes the center of G, and Cg(H) the
centralizer of H in G. The direct resp., semi-direct, product of groups is denoted
by G x H resp., G - H. All group actions are from the left, unless otherwise
stated. A conjugacy class of a group is called nontrivial if it is different from
{1} (the class consisting of the neutral element).

The symbol := means “defined to be equal to.” (Thus x := 2 means x is defined
tobe 2.) If K /k is a field extension, we let Aut(K /k) denote the group of automor-
phisms of K that are the identity on k. If K /k is Galois, G (K /k) (=Aut(K /k))
denotes the Galois group; for any subfield L of K invariant under G (K /k) we
let resg,,, denote the restriction homomorphism G(K/k) — G(L/k N L). IfU
is a subgroup of G (K /k), then KU denotes the fixed field of U. If K /k and L/k
are field extensions, a k-isomorphism from K to L is an isomorphism that is
the identity on k. We let k denote an algebraic closure of k.

We use the abbreviation “FG-extension” for “finite Galois extension.”
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