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Preface

Since the publication of the first edition of this book, the field of analog integrated circuits has
developed and matured. The initial groundwork was laid in bipolar technology, followed by
a rapid evolution of MOS analog integrated circuits. Thirty years ago, CMOS technologies
were fast enough to support applications only at audio frequencies. However, the continu-
ing reduction of the minimum feature size in integrated-circuit (IC) technologies has greatly
increased the maximum operating frequencies. and CMOS technologies have become fast
enough for many new applications as a result. For example, the bandwidth in some video
applications is about 4 MHz, requiring bipolar technologies as recently as about 23 years
ago. Now, however, CMOS easily can accommodate the required bandwidth for video and
is being used for radio-frequency applications. Today, bipolar integrated circuits are used in
some applications that require very low noise, very wide bandwidth, or driving low-impedance
loads.

In this fifth edition, coverage of the bipolar 741 op amp has been replaced with a low-
voltage bipolar op amp, the NE5234, with rail-to-rail common-mode input range and almost
rail-to-rail output swing. Analysis of a fully differential CMOS folded-cascode operational
amplifier (op amp) is now included in Chapter 12. The 560B phase-locked loop, which is no
longer commercially available, has been deleted from Chapter 10.

The SPICE computer analysis program is now readily available to virtually all electrical
engineering students and professionals, and we have included extensive use of SPICE in this
edition, particularly as an integral part of many problems. We have used computer analysis as
it is most commonly employed in the engineering design process—both as a more accurate
check on hand calculations. and also as a tool to examine complex circuit behavior beyond the
scope of hand analysis.

An in-depth look at SPICE as an indispensable tool for IC robust design can be found in
The SPICE Book, 2nd ed., published by J. Wiley and Sons. This text contains many worked
out circuit designs and verification examples linked to the multitude of analyses available in
the most popular versions of SPICE. The SPICE Book conveys the role of simulation as an
integral part of the design process, but not as a replacement for solid circuit-design knowledge.

This book is intended to be useful both as a text for students and as a reference book for
practicing engineers. For class use, each chapter includes many worked problems; the problem
sets at the end of each chapter illustrate the practical applications of the material in the text. All
of the authors have extensive industrial experience in IC design and in the teaching of courses
on this subject; this experience is reflected in the choice of text material and in the problem
sets.

Although this book is concerned largely with the analysis and design of ICs, a considerable
amount of material also is included on applications. In practice, these two subjects are closely
linked, and a knowledge of both is essential for designers and users of ICs. The latter compose
the larger group by far, and we believe that a working knowledge of IC design is a great
advantage to an IC user. This is particularly apparent when the user must choose from among a
number of competing designs to satisfy a particular need. An understanding of the IC structure
is then useful in evaluating the relative desirability of the different designs under extremes of
environment or in the presence of variations in supply voltage. In addition, the IC user is in a
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much better position to interpret a manufacturer’s data it he or she has a working knowledge
of the internal operation of the integrated circuit.

The contents of this book stem largely from courses on analog integrated circuits given at
the University of California at the Berkeley and Davis campuses. The courses are senior-level
electives and first-year graduate courses. The book is structured so that it can be used as the
basic text for a sequence of such courses. The more advanced material is found at the end of
each chapter or in an appendix so that a first course in analog integrated circuits can omit this
material without loss of continuity. An outline of each chapter is given below with suggestions
for material to be covered in such a first course. It is assumed that the course consists of
three hours of lecture per week over a 15-week semester and that the students have a working
knowledge of Laplace transforms and frequency-domain circuit analysis. It is also assumed
that the students have had an introductory course in electronics so that they are familiar with
the principles of transistor operation and with the functioning of simple analog circuits. Unless
otherwise stated, each chapter requires three to tour lecture hours to cover.

Chapter | contains a summary of bipolar transistor and MOS transistor device physics.
We suggest spending one week on selected topics from this chapter, with the choice of topics
depending on the background of the students. The material of Chapters 1 and 2 is quite important
in IC design because there is significant interaction between circuit and device design, as will
be seen in later chapters. A thorough understanding of the influence of device fabrication on
device characteristics is essential.

Chapter 2 is concerned with the technology of IC fabrication and is largely descriptive.
One lecture on this material should suffice if the students are assigned the chapter to read.

Chapter 3 deals with the characteristics of elementary transistor connections. The material
on one-transistor amplifiers should be a review for students at the senior and graduate levels and
can be assigned as reading. The section on two-transistor amplifiers can be covered in about
three hours, with greatest emphasis on differential pairs. The material on device mismatch
effects in differential amplifiers can be covered to the extent that time allows.

In Chapter 4, the important topics of current mirrors and active loads are considered. These
configurations are basic building blocks in modern analog IC design, and this material should
be covered in full, with the exception of the material on band-gap references and the material
in the appendices.

Chapter 5 is concerned with output stages and methods of delivering output power to a load.
Integrated-circuit realizations of Class A, Class B, and Class AB output stages are described,
as well as methods of output-stage protection. A selection of topics from this chapter should
be covered.

Chapter 6 deals with the design of operational amplifiers (op amps). Illustrative examples
of dc and ac analysis in both MOS and bipolar op amps are performed in detail, and the limita-
tions of the basic op amps are described. The design of op amps with improved characteristics
in both MOS and bipolar technologies are considered. This key chapter on amplifier design
requires at least six hours.

In Chapter 7, the frequency response of amplifiers is considered. The zero-value time-
constanttechnique is introduced for the calculations of the —3-dB frequency of complex circuits.
The material of this chapter should be considered in full.

Chapter 8 describes the analysis of feedback circuits. Two ditferent types of analysis are
presented: two-port and return-ratio analyses. Either approach should be covered in full with
the section on voltage regulators assigned as reading.

Chapter 9 deals with the frequency response and stability of feedback circuits and should
be covered up to the section on root locus. Time may not permit a detailed discussion of root
locus, but some introduction to this topic can be given.
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Ina 15-week semester, coverage of the above material leaves about two weeks for Chapters
10, 11, and 12. A selection of topics from these chapters can be chosen as follows. Chapter
10 deals with nonlinear analog circuits and portions of this chapter up to Section 10.2 could
be covered in a first course. Chapter 11 is a comprehensive treatment of noise in integrated
circuits and material up to and including Section 11.4 is suitable. Chapter 12 describes fully
differential operational amplifiers and common-mode feedback and may be best suited for a
second course.

We are grateful to the following colleagues for their suggestions for and/or evaluation of
this book: R. Jacob Baker, Bernhard E. Boser, A. Paul Brokaw, Iwen Chao, John N. Churchill,
David W. Cline, Kenneth C. Dyer, Ozan E. Erdogan. John W. Fattaruso, Weinan Gao, Edwin
W. Greeneich, Alex Gros-Balthazard, Tiinde Gyurics, Ward J. Helms, Kaveh Hosseini, Tim-
othy H. Hu, Shafig M. Jamal, John P. Keane, Haideh Khorramabadi, Pak Kim Lau, Thomas
W. Matthews, Krishnaswamy Nagaraj, Khalil Najafi, Borivoje Nikoli¢, Keith O’Donoghue,
Robert A. Pease, Lawrence T. Pileggi, Edgar Sdnchez-Sinencio, Bang-Sup Song, Richard R.
Spencer, Eric J. Swanson, Andrew Y. J. Szeto, Yannis P. Tsividis, Srikanth Vaidianathan, T. R.
Viswanathan, Chorng-Kuang Wang, Dong Wang, and Mo Maggie Zhang. We are also grateful
to Darrel Akers, Mu Jane Lee, Lakshmi Rao, Nattapol Sitthimahachaikul, Haoyue Wang, and
Mo Maggie Zhang for help with proofreading, and to Chi Ho Law for allowing us to use on the
cover of this book a die photograph of an integrated circuit he designed. Finally, we would like
to thank the staffs at Wiley and Elm Street Publishing Services for their efforts in producing
this edition.

The material in this book has been greatly influenced by our association with the late
Donald O. Pederson, and we acknowledge his contributions.

Berkeley and Davis, CA, 2008 Paul R. Gray
Paul J. Hurst
Stephen H. Lewis
Robert G. Meyer
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Symbol Convention

Unless otherwise stated, the following symbol convention is used in this book. Bias or dc
quantities, such as transistor collector current /¢ and collector-emitter voltage Vcp, are
represented by uppercase symbols with uppercase subscripts. Small-signal quantities, such
as the incremental change in transistor collector current i., are represented by lowercase
symbols with lowercase subscripts. Elements such as transconductance g,, in small-signal
equivalent circuits are represented in the same way. Finally, quantities such as total col-
lector current /., which represent the sum of the bias quantity and the signal quantity, are
represented by an uppercase symbol with a lowercase subscript.




CHAPTER n

Models for Integrated-Circuit
Active Devices

1.1 Introduction

The analysis and design of integrated circuits depend heavily on the utilization of suitable
models for integrated-circuit components. This is true in hand analysis, where fairly simple
models are generally used, and in computer analysis, where more complex models are encoun-
tered. Since any analysis is only as accurate as the model used, it is essential that the circuit
designer have a thorough understanding of the origin of the models commonly utilized and the
degree of approximation involved in each.

This chapter deals with the derivation of large-signal and small-signal models for
integrated-circuit devices. The treatment begins with a consideration of the properties of pn
junctions, which are basic parts of most integrated-circuit elements. Since this book is primarily
concerned with circuit analysis and design, no attempt has been made to produce a comprehen-
sive treatment of semiconductor physics. The emphasis is on summarizing the basic aspects
of semiconductor-device behavior and indicating how these can be modeled by equivalent
circuits.

1.2 Depletion Region of a pn Junction

The properties of reverse-biased pn junctions have an important influence on the character-
istics of many integrated-circuit components. For example, reverse-biased pn junctions exist
between many integrated-circuit elements and the underlying substrate, and these junctions
all contribute voltage-dependent parasitic capacitances. In addition, a number of important
characteristics of active devices, such as breakdown voltage and output resistance, depend
directly on the properties of the depletion region of a reverse-biased pn junction. Finally, the
basic operation of the junction field-effect transistor is controlled by the width of the depletion
region of a pn junction. Because of its importance and application to many different problems,
an analysis of the depletion region of a reverse-biased pn junction is considered below. The
properties of forward-biased pn junctions are treated in Section 1.3 when bipolar-transistor
operation is described.

Consider a pn junction under reverse bias as shown in Fig. 1.1. Assume constant doping
densities of Np atoms/cm” in the n-type material and N, atoms/cm?’ in the p-type material.
(The characteristics of junctions with nonconstant doping densities will be described later.)
Due to the difference in carrier concentrations in the p-type and n-type regions, there exists a
region at the junction where the mobile holes and electrons have been removed, leaving the
fixed acceptor and donor ions. Each acceptor atom carries a negative charge and each donor
atom carries a positive charge, so that the region near the junction is one of significant space
charge and resulting high electric field. This is called the depletion region or space-charge
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region. It is assumed that the edges of the depletion region are sharply defined as shown in
Fig. 1.1, and this is a good approximation in most cases.

For zero applied bias, there exists a voltage ¥ across the junction called the built-in
potential. This potential opposes the diffusion of mobile holes and electrons across the junction
in equilibrium and has a value'

NasN
Yo = Vpln —222 (1.1)
n;
where
kT .
V= —>~26mV at 300°K
q

the quantity n; is the intrinsic carrier concentration in a pure sample of the semiconductor and
ni == 1.5 x 10'%m~ at 300°K for silicon.

In Fig. 1.1 the built-in potential is augmented by the applied reverse bias, Vg, and the total
voltage across the junction is (Yo + Vg). If the depletion region penetrates a distance Wy into
the p-type region and W> into the n-type region, then we require

Wi Ny = WoNp (1.2)

because the total charge per unit area on either side of the junction must be equal in magnitude
but opposite in sign.
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Poisson’s equation in one dimension requires that

d*v N,
—,:~£:q—‘ for —W; <x<0 (1.3)
dx- € €
where p is the charge density, ¢ is the electron charge (1.6 x 107!'” coulomb), and € is the
permittivity of the silicon (1.04 x 10712 farad/cm). The permittivity is often expressed as
€ = Kgep (1.4)
where K is the dielectric constant of silicon and € is the permittivity of free space (8.86 x
10~ F/cm). Integration of (1.3) gives
dv _ gN 4
dx

x4+ C (1.5)

where C| is a constant. However, the electric field € is given by

v N
€= - :—(qu.\‘—i—C|> (1.6)

dx
Since there is zero electric field outside the depletion region, a boundary condition is
€=0 for x=-W,
and use of this condition in (1.6) gives
dv

5 gNa . .
E=———"Uu+W)=—— for —W; <x<0 (1.7)
€ dx

Thus the dipole of charge existing at the junction gives rise to an electric field that varies
linearly with distance.
Integration of (1.7) gives

N X%

qu—A<—+W|.\'>+C2 (1.8)
€ 2

If the zero for potential is arbitrarily taken to be the potential of the neutral p-type region, then

a second boundary condition is

and use of this in (1.8) gives

gN 4 X le R
V= — 4+ Wix+ — for —W; <x<0 (1.9)
€ 2 2
At x = 0, we define V = V|, and then (1.9) gives
Ny W?
=21 (1.10)
e 2
If the potential difference from x = 0 to x = W3 is V», then it follows that
Np W3
v, = 47272 (1.11)
€ 2

and thus the total voltage across the junction is

¢ )
o= V= Vi +vz=é(NAW.~+NDWS> (1.12)



