/) - =y { YAy : = 7
wre andg 1L40ceq
UNDERGRADUATE //TEXTS

A Discrete
Transition
to Advanced
Mathematics

Bettina Richmond
Thomas Richmond



LFure 4/{/ /4//?%5% ‘

UNDERGRADUATE EXTS -3

A Dascrete
Transition
to Advanced
Mathematics

Bettina Richmond
Thomas Richmond

American Mathematical Society
Providence, Rhode Island



2000 Mathematics Subject Classification. Primary 00-01.

For additional information and updates on this book. visit
www.ams.org/bookpages/amstext-3

Library of Congress Cataloging-in-Publication Data

Richmond, Bettina.
A discrete transition to advanced mathematics / Bettina Richmond, Thomas Richmond.
p. cm. — (Pure and applied undergraduate texts ; v. 3)
Originally published: Belmont, CA : Thomson/Brooks/Cole, ¢2004.
Includes bibliographical references and index.
ISBN 978-0-8218-4789-3 (alk. paper)
1. Mathematics- Textbooks. I. Richmond, Thomas. II. Title.

QA39.3.R53 2009
510- dc22 2008047393

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material. such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication. systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society:.
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permissionQams.org.

(© 2004 held by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 14 13 12 11 10 09



Preface

A Discrete Transition to Advanced Mathematics is designed to bridge the gap between
more-computational lower level courses and more-theoretical upper level courses in
mathematics. While the focus is on building understanding, sharpening critical thinking
skills, and developing mathematical maturity, topics from discrete mathematics provide
the means.

The text contains more material than can be covered in one semester. There are
several reasons for this. First, this makes the book appropriate for Discrete Mathematics
courses for second- or third-year mathematics majors, as well as for Introduction to
Proofs courses. Second, this will allow each instructor some flexibility in the selection
of topics. Perhaps the best reason for the inclusion of so much material, however, is
that the book is designed for students who should be learning to read mathematics on
their own, and the extra sections should provide enjoyable reading at an appropriate
level for these students. Besides more standard topics, the topics mentioned below will
distinguish this text from others and, if not presented in class, would provide excellent
material for independent projects.

* Divisibility tests, long familiar to many students, are explained and proved in
Section 3.4.

* The surprising elementary number patterns in Section 3.5 emphasize the impor-
tance of pattern recognition.

* The binomial coefficients are introduced and applied geometrically in Section 4.1
before the formula for them is presented in Section 4.3.

* Modular arithmetic is introduced in Section 5.4 as a quotient construction and
quotient spaces are used to investigate partial order relations on the blocks of a
partition of a set A (i.e., quasiorders on A).

* The study of sequences in Chapter 8 provides a discrete version of analysis. Finite
differences and their relation to sequences generated by polynomials are investi-
gated. Limits are treated formally, providing an introduction to epsilon-N proofs
for those who may have missed epsilon proofs in the calculus sequence.

* Infinite series, infinite products, and nested radicals in Section 8.5 provide an
introduction to some forms of infinite arithmetic.

* Fibonacci numbers and Pascal’s triangle in Chapter 9 provide a delightful array
of surprising results that provide a unifying synthesis of topics from the previous
chapters.

* Continued fractions and their applications are discussed in Chapter 10.
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Preface

The remarkable connections between the Fibonacci numbers, Pascal’s triangle, and
the golden ratio in Chapter 9 were the original impetus for our writing this text. We
considered a course based on these connections and patterns, many of which are very
easily grasped. As we debated the appropriate level of presentation, we concluded that
these ideas would serve as an excellent capstone to A Discrete Transition to Advanced
Mathematics course. ;

We have taught courses based on Chapters 1-6 with Sections 3.4, 3.5, 4.5, and 6.4
optional, with additional topics and projects selected from the later chapters. Chap-
ters 1-3 are required for all subsequent chapters and should be presented in order. The
subsequent chapters need not be covered in order, but Chapter 5 is required for Chapter 6
and Sections 6.1 and 6.2 are needed for Section 7.2 and ’ Chapter 8.

The material presented here should be accessible to students with the mathematical
maturity provided by two or three semesters of calculus or an introductory linear algebra
class. No calculus or linear algebra is used, but on a few occasions, connections to these
subjects are noted.

Besides many classic results, we also include many elegant or surprising results
which are not as widely known. We have tried to attain an engaging writing style that
emphasizes precision through an intuitive understanding of the underlying concepts.
However, simply reading the text will not be enough: Every student should work lots of
exercises! There are over 650 exercises of varying difficulty designed to reinforce and
extend the material presented.

We hope that the selection of topics, examples, and exercises will provide each
reader with some of the marvel and amazement we still enjoy.

Ancillaries
The following ancillaries are available:

Student Solutions Manual The Student Solutions Manual provides worked out so-
lutions to selected problems in the text.

Complete Solutions Manual The Complete Solutions Manual provides complete
worked out solutions to all of the problems in the text and is available only to instructors.
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Sets and Logic

[The universe] cannot be read until we have learnt the language
and become familiar with the characters in which it is written. It
is written in mathematical language...

—Galileo Galilei (1564-1642)

For the things of this world cannot be made known without a
knowledge of mathematics.

—Roger Bacon (1214-1294)

A set is a collection of objects. The objects of the set are called the elements of the set.
One way to specify a set is to list all the elements inside set brackets “{” and “}”. For
example, {Alabama, Alaska, Arizona, Arkansas} is a set with four elements. We may
also specify a set in words. The set given above could be specified by stating “the set
of all U.S. states that start with the letter A.” It is convenient to give sets names, and
conventionally, sets are named by capital letters. Thus, we may write A = {Alabama,
Alaska, Arizona, Arkansas}. Alabama is an element of A. Birmingham, Atlanta, and
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CHAPTER 1

Sets and Logic

1.1.1

Wyoming are not elements of A. The symbol for “is an element of” is €. Putting a slash
through this symbol gives the symbol for “is not an element of.” Thus, we may write

Alabama € A
Alaska € A
Birmingham ¢ A
Atlanta ¢ A
Wyoming & A.

Let us consider the set consisting of the natural numbers less than 6, and let us
call this set B. The previous cumbersome sentence may be shortened to this: Let
B ={1, 2, 3, 4, 5}. Here we are listing the elements of B in roster formrather than giving
a verbal description of the elements. Counting down from 6, you may determine that
the set of natural numbers less than 6 should be {5, 4, 3, 2, 1}. This is also correct. The
elements of a set may be listed in any order. Thus, B = {1,2,3,4,5} =1{5,4,3,2,1} =
{3, 5,2, 1, 4}, and there are many more correct representations of the set B.

Any set U must be well-defined; that is, for every object x, there must be an un-
equivocal answer to the question “Is x € U?” We may not always know the answer to
this question, but we must know that an unequivocal answer exists. Consider the set F
of all living people who have an ancestor with the name Fletcher. Are you a member
of this set? Though you may not know the answer, you should recognize that there is
an indisputable answer—either yes or no. The set of good books, however, is not a
well-defined set. The answer to the question “Is War and Peace a good book?”’ may be
subject to dispute. The usage of the word good is subjective, and this makes the word
an improper choice to use in specifying well-defined sets.

Two sets are equal if they contain exactly the same elements. The set B = {4, 3, 1,
5, 2} and the set {%, «/Z, «/5, 22 5} are equal since they contain exactly the same ele-
ments, namely 1 = %, 2=4+/4,3=4/9, 4 = 22 and 5. The set of kangaroos on the
moon is a well-defined set that contains no elements. The set { } containing no elements
is called the empty set or null set and is denoted @ or { }.

A set is finite if there is a whole number that tells the number of elements in the set.
The set B = {1, 2, 3, 4, 5} is finite, and the number of elements in B is five.

DEFINITION The cardinality of a finite set S is the number of elements in the set S
and is denoted |S]|.

Counting the number of elements in a set may not be as easy as it sounds, especially
if the set is described instead of listed. How many elements does the set of letters
in the word throughout have? Stated another way, find the cardinality |C| of the set
C={t h,r,o,u,g,h,o,u,t}. Tothe question “Is r € C?” we should answer “Yes.”
To the question “Is ¢ € C?” we should answer “Yes, yes.” Though it is more emphatic,
the affirmative outcome “Yes, yes” is not different from the affirmative outcome “Yes,”
so the element ¢ € C only counts as one element, despite the fact that we listed it twice.
If we let D be the set of letters in the word trough, then D = {¢, r, 0, u, g, h}. The sets
C and D have exactly the same elements, so C = D, and thus |C| = |D| = 6. Repeated
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elements in a set should only be counted once. Recognizing the duplication is frequently
more difficult than in this example.

Sometimes we may not be able to count the elements of a finite set. The set F
of living people with an ancestor named Fletcher is a finite set, and though we do not
know the exact number of elements in F, we know | F| cannot exceed the current world
population, and thus must be finite.

If a set is not finite, it is infinite. The set of natural numbers, for example, is infinite.
We will not be able to list all the elements of an infinite set, but we may indicate an infinite
set by a verbal description or by listing several of the elements in a clear pattern followed
by an ellipsis (“...”). Some standard notation for some standard sets will illustrate this.

The set of natural numbers = N = {1,2,3,4,...}
The set of whole numbers =W = {0, 1,2, 3, ...}

The set of integers =7Z = {0,1,-1,2,-2,3,-3,...}
={..,-3,-2,-1,0,1,2,3,...}

Another convenient way to specify a set symbolically is by set-builder notation,
which we illustrate here. The notation {x|x € N and x < 6} is read “the set of all
x such that x € N and x < 6.” In general, {x| * * % * * % x} is read “the set of all x
such that x satisfies the properties * * * * * * % stated.” Unknown elements of a set are
conventionally denoted by lowercase letters, such as the x above. If the elements x are
to come from some specified set, we may include this information before the “pipe”
symbol “|”. The set {x |x € N and x < 6} could be written as {x € N|x < 6} and read
“the set of natural numbers x such that x < 6.” This is the set B = {1, 2, 3, 4, 5} we
have seen earlier.

We may now introduce the notation for two other frequently used infinite sets.

The set of real numbers = R = {x | x is a real number}
The set of rational numbers = Q = {} |a, b € Z, b # 0}

The set of rational numbers Q consists of Quotients of integers, with the usual restriction
that division by 0 is not allowed.

If we take an arbitrary set S and remove some, none, or all of its elements, the set
T of remaining elements is called a subset of S, and we write T C S. Formally, a set T
is a subset of S if and only if every element of T is also an element of S. If T is a subset
of S, then S is a superset of T and we may write S © T. The notation 7 C S may also
be read “T is contained in S.” We will illustrate this notation with some examples.

{red, white, blue} C {red, white, blue, green}
{1,3,5} € {1,2,3,4,5}
{2} ©{1,2,3,4,5}
W={}<{1,2,3,4,5)}
{1,2,3,4,5} € {1,2,3,4,5}
(56,7} £ {1,2,3,4, 5}
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IfACBand B CC,

then A C C.

The symbol Z used in the last example above means “is not a subset of.” Itis critical
to use the correct terminology and symbols for subsets and elements of a set. Observe
that3 € {1,3, 5} but3 & {1, 3, 5}. Since 3 is not a set, it cannot be a subset of anything.
Similarly, {3} C {1, 3, 5} but {3} ¢ {1, 3, 5}.

IfT C SbutT # S, we say T is a proper subset of S and write T C S. (Compare
this notation to < and <.) While {1, 3} is a subset of {1, 2, 3, 4, 5}, denoted {1, 3} C
{1,2,3,4,5}, we could be more explicit and say that it is a proper subset, denoted
{1,3} c {1,2,3,4,5}. Since {1, 2, 3, 4, 5} is a subset of itself but not a proper subset of
itself, we could write {1, 2,3, 4,5} € {1,2,3,4,5} but {1, 2,3,4,5} ¢ {1,2,3,4,5}.

Suppose A € B and B C C. Then every element of A is an element of B and every
element of B is an element of C. It follows that every element of A is an element of C;
thatis, A € C. Thus, A € B and B C C implies A € C. We may depict this situation
using a Venn diagram as shown in Figure 1.1. Venn diagrams provide informal graphical
illustrations of shared elements of several sets.

=~

If A C Band B C A, then every element of A is an element of B and every element
of B is an element of A. Thus, A and B have exactly the same elements, so A = B.
This is a standard way to show that two sets are equal: show A is contained in B and
show B is contained in A. (For example, see Example 1.2.2 in the next section.)

Every set is a subset of itself, and the empty set @ is a subset of any set. Thus, for
any set S, we have # € S € §. This seems to show that every set S has at least two
subsets, namely the empty set and itself. This is true unless S = @, in which case these
“two” subsets are really one and the same. We can properly state that every nonempty
set S has at least two subsets, namely ) and S. Counting the number of subsets of a given
set is an important problem we will consider from several approaches in the chapters
that follow. Let us count all the subsets of a few small sets. To count them, we need a
systematic way to find all the subsets.

EXAMPLE How many subsets does the set {1, 2} have?

Solution There is one subset of {1, 2} with zero elements: @.

There are two subsets of {1, 2} with one element: {1} and {2}.

There is one subset of {1, 2} with two elements: {1, 2}.

This gives a total of 1 4+ 2 + 1 = 4 subsets of the two-element set {1, 2}. [ ]
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EXAMPLE How many subsets does the set {1, 2, 3} have?

Solution There is one subset of {1, 2, 3} with zero elements: @.

There are three subsets of {1, 2, 3} with one element: {1}, {2}, and {3}.

There are three subsets of {1, 2, 3} with two elements: {1, 2}, {1, 3}, and {2, 3}.

There is one subset of {1, 2, 3} with three elements: {1, 2, 3}.

This gives a total of 1 + 3 + 3 4+ 1 = 8 subsets of the three-element set {1, 2, 3}. ]

The elements of a set may take any form. That is, we may take sets of any kind
of objects. We may form sets of words, such as {black, white}, or sets of letters, such as
{b,l,a,c,k,w,h,i,t,e}. We may form sets of numbers, such as {2, 4, 6, 8, 10}, oreven
sets of sets, such as { {2, 4, 6, 8, 10}, {3, 6, 9}, {4, 8}, {5, 10} }. To avoid confusion about
the context of the word set, a set whose elements are sets will be called a collection of
sets or a family of sets. Collections of sets are typically denoted with script capital letters.
Thus, ¥ = { {2,4,6,8, 10}, {3, 6, 9}, {4, 8}, {5, 10}, {6} } is a collection of five sets.
We have {3,6,9} € ¥, {4,8} €%, and {6} € ¥, but 6 €%, 3¢ %, {3} €€, and
(2,4} € F.

A subcollection of a collection ¥ is a collection . such that every set in the col-
lection .% is also a set in the collection 4. Thus, { {4, 8}, {5, 10} } € ¥ says that
{ {4, 8}, {5, 10} } is a subcollection of €. The definition of subcollection is precisely the
definition of subset but with a shift of terminology to compensate for the fact that our
“set” of “elements” is, in this case, called a “collection” of “sets.” Some other examples
may clarify these definitions.

Consider the collection of all subsets of {1, 2}. In Example 1.1.2 we found all the
elements of this collection. The collection of all subsets of {1, 2} is { @, {1}, {2}, {1, 2} }.
This is an important construction and has a special name.

DEFINITION The collection of all subsets of a given set S is called the power set of
S, denoted Z2(S). Thus, Z(S) = {A|A C S}.

Example 1.1.3 shows that the power set of {1, 2, 3} is
2({1,2,3) ={0,{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2,3} }.

We may consider subcollections of Z2({1, 2, 3}) such as the collection 2 of all subsets
of {1, 2, 3} that contain the element 2:

2={Ae P({1,2,3])|2€ A} ={{2},{1,2},{2,3},{1,2,3} }.
The collection .# of subsets of {1, 2, 3} that have cardinality 2 is
F={Ae Z2({1,2,3) | |1A| =2} ={(1,2},{1,3},{2,3} }.

We have 9 € ({1, 2,3}) and &F C ({1, 2, 3}). Observe the distinction between
“containing two elements” and “containing the element 2.” As with any set, we may
consider the cardinality of a set of sets—that is, of a collection. Here we have |2| = 4,
|#| =3and |2({1,2,3})| =8.

The following example will reinforce the importance of distinguishing between an
element of a set and a subset of a set.
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1.1.5 EXAMPLE

Let A = {Alabama, Alaska, Arizona, Arkansas}
E=0
I = {Illinois, Indiana, Iowa}

O = {Ohio, Oklahoma, Oregon}, and

U = {Utah}.
Now, if welet ¥ = {A, E, I, O, U}, then ¥ is a collection of five sets and we have
Alaska € A
{Alaska, Arizona} C A
Alaska ¢ ¥

{Alaska, Arizona} ¢ ¥

{Alaska, Arizona} € ¥

I = {Illinois, Indiana, Iowa} € ¥
1€V

{O,E, U}V
{E,U}={{},{Utah} } ¥
{uycv.

Note that Utah € U and {Utah} C U (in fact, {Utah} = U), but Utah € U. Furthermore,
Ue?V ={A,E,I,0,U} and {{Utah}} = {U} C ¥, but {Utah} = U € ¥, Utah €
¥ ,and Utah ¢ #. There are also some subtleties involving the empty set in this example.
From the definition of ¥/, we see that E = @ € #'. The empty set, however, is a subset of
any set, and in particular, the empty collection is a subcollection of any collection. For our
collection ¥, we have @ C ¥. Now we have shownthat E=@f € ¥ andE =0 C V.
This is a rare occurrence. Only in extraordinary circumstances will an element of a set
also be a subset of that set. Note that E =} C # and also {E} = {#} C ¥, but @ # {@}.
Generally, x # {x}, and there is no exception forx = (. While @ has no elements, {} has
one element, namely (. Before leaving this example, we should note that the collection
¥ of the fivesets A, E, I, O, and U is not the same as the set {Alabama, Alaska, Arizona,
Arkansas, Illinois, Indiana, Jowa, Ohio, Oklahoma, Oregon, Utah} of the 11 states that

start with a vowel. In the next section we will see that this latter set is the union of the
collection 7.

Large collections of sets are often expressed using an “index” for each set. For
example, suppose a certain class meets for 36 days. Let S; be the set of students present
on the first day, S, be the set of students present on the second day, and in general, let
Sy be the set of students present on the k-th day (k € {1,2, 3, ..., 36}). The subscript k
is called the index (plural: indices). The collection . of all the sets {51, S, ..., S}
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may be represented as an indexed collection using various notations:

. ={Silk=1,2,3;+::3536}
={S|kel{l,2,3,...,36}}
= {Sk|k € I} where I = {1,2,3,...,36}
={Sk}13(il
= {Sk}ker where I = {1,2,3,...,36}.

The index k is a “dummy variable”—we could just as well use 7, j, A, or any other
symbol. The set of values that the index may assume is called the index set. In the

example at hand, the index setis I = {1, 2, 3, ..., 36}.
EXERCISES
1. (a) True or false? {Red, White, Blue} = {White, Blue, Red}.

(b) What is wrong with this statement: Red is the first element of the set {Red,
White, Blue}?

. Which has the larger cardinality? The set of letters in the word MISSISSIPPI or

the set of letters in the word FLORIDA?

. Fill in the blank with the appropriate symbol, € or C.

@ 1,2,3)___{1,2,3,4} @) {a}—{{a}, {b}, {a, b}}
() 3__({1,2,3,4} (e) 8__{{a}, (b}, {a,b}}
(© {3} —{1,2,3,4} ) {{a}. {b}} {{a}, {6}, {a, b}

. Draw a Venn diagram showing the proper relationship between these sets:

N,Q,R, W, and Z.

. (a) How many subsets does the empty set have?

(b) How many subsets does the set {1} have?

(¢) Noting the number of subsets of a two-element set and of a three-element set
from Examples 1.1.2 and 1.1.3, how many subsets do you think a
four-element set {1, 2, 3, 4} would have?

(d) List all the subsets of the four-element set {1, 2, 3, 4}.

(e) How many subsets do you think a five-element set would have? A six-element
set? An n-element set?

Determine whether the sets below are well-defined or not. For each well-defined
set, state whether it is finite or infinite.

(a) The set of women pregnant with twins at some time during this year.

(b) The set of kangaroos in Australia.

(c) The set of tall buildings.

(d) The set of grains of sand on the earth.

(e) The set of even integers.

(f) The set of hairs on your head.

(g) The collection of all subsets of the set of hairs on your head.

(h) The set of people who shook hands with George Washington.
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7. (a) Are there well-defined sets in Exercise 6 for which we may not know the
answer to the question “Is x an element of this set?” for every object x?
(b) Are there finite sets in Exercise 6 for which we do not know the cardinality?

8. Let S; ={o,n,e}, S, ={t,w, o0}, S3 = {t,h,r, e, e}, and so on.
(a) Findallk € {1, 2,..., 10} with | S| = 4.
(b) Find distinct indices j, k € N with §; = S;.
(¢) Find the smallest value of k € N witha € §;.
(d) Let ¥ = {Sk}20=1- Determine whether the following statements are true or

false.
i. S13={n,e,i,t,h,e,r} ix. §1 C 8y
ii. {n,e,t} C Sy X. 851 C S
iii. S € .S xi. {n,i,e} € .S
iv. 3 C . xii. {{f,0,u,r}} C.&
v.0e S xiii. u€S40
vii .S xiv. P(S9) € P(Si9)
vii. § C . XV. {s,i} € LP(S¢)
viii. §1 C Syy xvi. w € F(S,)

9. Fork € {1,2,...,20},let Dy = {x|x is a prime number that divides k} and let
92 ={Dlke{1,2,...,20}}.
(a) Find D], D2, Dlo, and Dz().
(b) True or false:

i. D, C Dy vii. {5} € 2
ii. D; C Dy viii. {4, 5} €9
ili. Dyp C Dy ix. {{3}}] €2
iv.0e 2 X. #(Dg) € P(Dg)
v.0C9 xi. Z2({3,4}) 2
vi. 5€9 xii. {2,3} e Z(Dy)
(¢) Find |Djo| and |Dyg|.
(d) Find |2|.

10. Give an example of an indexed collection . = {Sk}i=l with || = 3.

1.2 Set Operations

There are some standard set operations used to derive new sets from given sets.

Intersection and Union

Given sets S and T, the intersection of S and T, denoted S N T, is the set of elements
which are in both S and 7. The union of sets S and T, denoted S U T, is the set of all
elements which are in either S or T or both.

SNT ={x|xeSand x € T}
SUT ={x|xeSorx eT}
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It is clear from the definitions that for any sets Sand 7, SNT =T NSand SUT =
T U S. The Venn diagrams in Figure 1.2 depict the sets S and T', the intersection SN T,
and the union SU T'.

ST SuT

3rd
Ave.

Main
Street

-

: Intersection of 3rd Ave.
Figure 1.2 :
In?ersections and unions. and Main Street European Union

For example, suppose A = {1, 3,5,7}, B=1{3,4, 5,6}, and C = {2, 4}. Then we

have
ANB={3,5}
AUB={1,3,4,5,6,7}
ANC =9
AUC={1,2,3,4,5,7}
BNC = {4}

BUC ={2,3,4,5, 6}

Two sets with no “overlap,” such as A and C above, are said to be disjoint. Formally,
sets S and T are disjoint if SNT = .

Let us consider another example. Let U be the set of students enrolled at Ottawa
University. In this example, we will only consider subsets of this set U. Such a set U
containing all the objects to be considered is called the universal set for the problem in
question.

Let H = {x € U | x has black hair}.
Let E = {x € U |x has green eyes}.



