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Preface

This book is based, in part, upon lecture notes that I wrote for courses in Sonar
Systems Engineering (in the Department of Electrical and Computer Engineer-
ing) and Radiation and Scattering of Waves in Fluids (in the Department of
Physics) at the Naval Postgraduate School. I took an interdisciplinary approach
in writing this book, involving the fields of electrical engineering (linear systems
theory, statistical communication theory, and digital signal processing) and phy-
sics (underwater acoustics). However, the main approach was that of an electric-
al engineer with acoustic theory provided as needed.

The philosophy that I followed was to treat the ocean medium as a linear,
random filter. This idea is by no means new; it has been part of the research
literature since the mid-1960s. However, this book represents an attempt to write
in the style of a textbook to make the material more easily approachable.

This book is rigorous primarily in the sense that its emphasis is on novel, general
derivations of results from first principles whenever possible and practical, using
a consistent and mainly standard notation from the first chapter to the last.
However, it is not devoted to theory for theory’s sake, since by the use of
simplifying assumptions and examples, numerous practical results are obtained. It
is hoped that by providing novel derivations whenever possible, a fresh point of
view is expressed and duplication avoided.

The field of underwater acoustics is so broad and interdisciplinary that it is
difficult to write a single book that treats in sufficient depth and clarity all the
various topics, methods, and theories considered as part of the field. The danger is
that one produces either an encyclopedic handbook, which treats many topics with
elementary discussions and developments, or a research monograph, which reads
like a several-hundred page journal article. While each has its merits and fills a
definite need, it is my opinion that neither is totally suitable for use as a classroom
textbook. It was therefore my philosophy to concentrate on developing in suffi-
cient theoretical depth and clarity basic, fundamental results that are useful in a
variety of underwater acoustic applications so that the overall level of the book lies
between the two extremes of a handbook and a research monograph. The topics
covered in this book indicate that it is just as important for the signal processor to
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X PREFACE

understand the fundamentals of wave propagation as it is for the underwater
acoustician to understand the fundamentals of array theory and signal processing.
The vehicle I chose to bring together the areas of wave propagation and array
theory and signal processing is linear systems theory. This book does not discuss
the sonar equations or waveguides, not because I felt these topics were unimpor-
tant, but because there are already several books available that contain good
discussions of these subjects.

This book could well be used by first-year graduate students and advanced
college seniors in the fields of electrical engineering, ocean engineering, acous-
tics, and oceanography for a treatment of sonar systems engineering. It is quite
suitable for self-study.

Chapter 1 provides a general overview of the book and background discussion
concerning the treatment of the ocean medium as an underwater acoustic com-
munication channel. Chapters 3 and 4 cover the fundamentals of complex aper-
tures and arrays, respectively, while Chapter 5 covers basic topics in sonar signal
processing. Complex aperture theory is discussed before array theory, analogous
to the general practice of discussing the theory of continuous-time signals before
discussing discrete-time signals. Once the general principles of aperture theory are
developed, the array theory results can be derived quickly and easily. Chapters
3-5 contain many examples and problems with answers provided at the end of the
book. Several of the problems at the end of Chapter 4 are well suited for computer
projects, and I have used them for such purposes. Recommended prerequisites for
this course include introductory-level courses in communication theory, probabil-
ity, and random processes. An introductory-level course in acoustics would be
desirable but is not absolutely necessary.

Another type of course that could be taught from this book is an advanced
special topics course on mathematical models of the ocean medium. Chapters 1, 2
(Fundamentals of Linear, Time-Variant, Space-Variant Filters), 6 (Wave Prop-
agation in Inhomogeneous Media), and 7 (Random Ocean Medium Transfer
Functions) could form the foundation for such a course and could be supplemented
by additional material of the instructor’s choice. Chapters 2, 6, and 7 do contain
examples and are written in a tutorial fashion suitable for classroom use. Chapter 7
is the essence of the book for it is here that most of the ideas contained in Chapters
1 through 6 are brought together.

I would like to thank my colleagues Profs. Donald E. Kirk and Robert D.
Strum of the Department of Electrical and Computer Engineering at the Naval
Postgraduate School for their early encouragement and support. My students also
deserve special credit for their many thought-provoking questions and com-
ments, which caused me to make many revisions for the better. I would also like
to acknowledge the Naval Postgraduate School Foundation Research Program
and the Defense Advanced Research Projects Agency (DARPA). Their support
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of my research efforts is responsible for the material appearing in Chapters 2 and
7 of this book. And finally, I would like to acknowledge Lily T. Nimri and
Elaine R. Christian for their typing assistance and Alvin W. Lau who drew all of
the artwork.

Lawrence J. Ziomek
Carmel, California
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1

Introduction and Background
Discussion

1.1 THE PROPAGATION OF ACOUSTIC SIGNALS
IN THE OCEAN

The propagation of small-amplitude acoustic signals in the ocean can be
described by the linear, inhomogeneous, scalar wave equation

2
VZ(P(t’r) Z(I') 6[2 (p(t ) M(t’r)s (11'1)
where ¢(t, ) is the velocity potential at time t and position r, xy(t, r) is the input
acoustic signal to the medium or the source distribution, which represents the
rate at which fluid volume is added (volume flow rate) at time ¢ and position r
per unit volume of fluid, and c¢(r) is the speed of sound in the ocean in meters
per second. If we assume that c(r) is equal to a constant c, then the solution of
Eq. (1.1-1) is given by

olt,F) = _4[ Xmlt — rOI/C)’rO)dVO (1.1-2)

|l' — Tl

where the quantity
t —(Ir —rol/c) (1.1-3)

is known as the retarded time and the integration is performed (in general) over
the volume occupied by the source (see Fig. 1.1-1). The acoustic pressure p(t,r)
in pascals (newtons per square meter) and the acoustic fluid (particle) velocity

1



2 1 INTRODUCTION AND BACKGROUND DISCUSSION

—» N

Plt,r)

FIG. 1.1-1 Source distribution shown occupying a volume V.

vector u(t,r) in meters per second can be obtained from ¢(t,r) as follows:
0
p(t,r) = — Poafp(l, r), (1.1-4)

where p,, is the equilibrium density (assumed to be constant) of the ocean in
kilograms per cubic meter and

u(t,r) = Vo(t,r). (1.1-5)
Note that if we take the curl of both sides of Eq. (1.1-5), then
V X u(t,r) = VX Vo(t,r) =0, (1.1-6)

since the curl of the gradient of a scalar function [in this case, ¢(t,r)]
is equal to zero. Equation (1.1-6) indicates that the vorticity of the fluid,
which is defined as V X u(t,r) and is proportional to the local angular velocity
of the fluid, is equal to zero, and thus u(z,r) is said to be irrotational.

In addition to acoustic (sound) waves, there is water motion resulting from
internal waves. Thus, in general, we must deal with the superposition of two
wave motions: (1) acoustic (sound) waves, whose motions are irrotational and
compressional; and (2) internal waves, whose motions are rotational and
incompressible. The total fluid-velocity vector is therefore given by

Vo(t,r) + V X ®(t, 1), (1.1-7)
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where Vo(t,r) is the fluid-velocity vector due to sound waves [see Eq. (1.1-5)]
and V X ®(t, 1) is the fluid-velocity vector due to internal waves. The expres-
sion @(t, 1) is called the vector velocity potential. Note that V- V X ®(t,r) = 0
(vector identity), and thus the wave motion V X ®(t,r) due to internal waves
is said to be incompressible, as mentioned earlier. We will not be con-
sidering internal wave motion in this book, so Eq. (1.1-5) will be our
defining relationship for the fluid-velocity vector.

Equation (1.1-2) is a representation of the acoustic field at distances close to
the source, where the speed of sound can be considered constant. The analysis
and results presented in Chapters 3 and 4 on the directivity functions of
complex apertures and arrays, respectively, are based on Eq. (1.1-2). In
addition, the various signal-processing topics considered in Chapter 5 also
assume that c is constant. Of course, as is well known, the speed of sound in the
ocean is not constant in general but is instead a function of temperature,
depth, and salinity, that is, it is a function of position in the medium. Thus,
different approximate solutions of Eq. (1.1-1) for variable speed-of-sound
profiles c(r) are discussed in Chapter 6. These solutions are then incorporated
into the derivation of transfer functions of the random ocean medium, which
is the subject of Chapter 7. Once a transfer function has been derived, it can
then be coupled to the far-field directivity functions of the transmit and receive
apertures (arrays) and to the frequency spectrum of the transmitted elec-
trical signal. This systems approach is introduced next in more detail.

1.2 THE OCEAN MEDIUM AS AN UNDERWATER
ACOUSTIC COMMUNICATION CHANNEL

Since the wave equation for small-amplitude acoustic signals is linear, we
can represent the ocean medium (in general) as a linear, time-variant, space-
variant, random filter (system or communication channel). With this interpre-
tation in mind, refer to Fig. 1.2-1, which illustrates the geometry of a basic
bistatic communication channel, and Fig. 1.2-2, which is a mathematical
block-diagram representation of Fig. 1.2-1. With respect to Fig. 1.2-1, both
the transmit and receive apertures (arrays) are, in general, volume apertures
(arrays) and are in motion.

Figure 1.2-2 serves as a good introduction to the following concepts and
associated notation:

(1) complex transmit and receive aperture functions, A¢(f,r) and Ax(1,r);
(2) transmit and receive far-field directivity functions, Dy(f,«) and
D (n, B);
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FIG. 1.2-1 Basic geometry of a bistatic communication channel.

(3) vectors whose components are spatial frequencies, a, v, f, and y;

(4) frequency and angular spectra, X(f,a), Xu(f,v), Yu(n, B), and Y(n,y);

(5) linear, time-variant, space-variant, random ocean medium impulse-
response and transfer functions, hy(t,ry;t, 1) and Hy( f,v;t,r).

Before proceeding further, a word of caution concerning Fig. 1.2-2 is in order.
Note, for example, that Xy # XDy, Yy # XyHy, and Y # YDy, in general.
The equations required for describing the linear, time-variant, space-variant,
random filter’s input—output relationships and for coupling the transmitted
and received electrical signals to the medium via the transmit and receive
apertures are developed in Chapters 2 and 3, respectively.

Let us now describe in more detail the notation used in Fig. 1.2-2. The
position vectors r, and r refer to the spatial coordinates (x,, yo,z,) and
(x, y, 2), respectively, in meters, and ¢ refers to time in seconds. The parameters
f and 5 are frequencies in hertz where f represents input or transmitted
frequencies and 7 represents output or received frequencies. Note that if n # f,
then Doppler spread is implied.

x(t,r) AT(f,r) xM(t,r) hM(r,ro;t,r) yM(t,r) AR(-y,,.») y (t,r)
—» EE—— EEE— >
X (f, a) D, (fa) Xy (v Hy(fvit, r) Y (7, 8) Dg(m,B) Y (n,y)

FIG. 1.2-2 Mathematical block-diagram representation of the bistatic communication channel
depicted in Fig. 1.2-1.
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The quantities «, v, B, and y are vectors whose components are spatial
frequencies in cycles per meter. Since spatial frequencies are related to both
direction cosines and wavelength, and hence to wave-number components,
they represent directions of wave propagation. The vector v represents input
or transmitted spatial frequencies into the medium, as in Xy( f,v), while
represents output or received spatial frequencies from the medium, as in
Yy(n, B). Note that if B # v, then angular spread (scatter) is implied.

The remaining expressions found in Fig. 1.2-2 are further described in the
following list:

x(t,r) Input electrical signal to transmit electroacoustic trans-
ducer applied at time t and spatial location r of
transducer

X(f,) Frequency f and angular spectrum a« of input electrical
signal

A1(f,r) Complex frequency response at spatial location r of

transmit transducer. Also referred to as the complex
transmit aperture function

Di(f, ) Transmit far-field directivity function or beam pattern

xp(t, 1) Input acoustic signal to the medium applied at time ¢
and spatial location r. Also, output acoustic signal from
transmit electroacoustic transducer. Recall that x(z,r)
appeared as the source distribution in Eq. (1.1-1)

Xu(fov) Frequency f and angular spectrum v of input acoustic
signal

hy(t,ro;t,r)  Time-variant, space-variant, random impulse response
or Green’s function of the ocean medium. It describes the
response of the medium at time ¢ and spatial location r
due to the application of a unit impulse at time (t — 1),
or 7 seconds ago, at a distance |r — r,| meters away (see
Fig. 1.2-1)

Hy(f,v;t,r)  Time-variant, space-variant, random transfer function
of the ocean medium

ymlt,T) Output acoustic signal from the medium at time ¢t and
spatial location r. Also, input acoustic signal to receive
electroacoustic transducer

Yu(n, B) Frequency 5 and angular spectrum f of output acoustic
signal
Ag(n,1) Complex frequency response at spatial location r of

receive transducer. Also referred to as the complex
receive aperture function
Di(n, B) Receive far-field directivity function or beam pattern
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y(t,r) Output electrical signal from receive electroacoustic
transducer at time ¢t and spatial location r of transducer

Y(n,y) Frequency 7 and angular spectrum y of output electrical
signal

As mentioned previously, we can represent the ocean medium as a linear,
time-variant, space-variant, random filter. The term “time-variant” implies
motion among targets, the ocean surface, discrete point scatterers, and the
transmit and receive apertures (arrays). Discrete point scatterers in the ocean
may include, for example, gas bubbles, fish, and particulate matter. The time-
variant property results in both Doppler spread and spread in time-delay
values. If the filter is time-invariant, then no motion is implied. As a result,
there will be no Doppler spread and no spread in time delay.

The term “space-variant” implies that the sound-speed profile (index of
refraction) of the ocean is a function of position. This space-variant property
results in scatter or angular spread due to refraction. If the filter is space-
invariant, then an isospeed medium is implied. As a result, there will be no
refraction, and hence no scatter or angular spread, since the sound rays will be
traveling in straight lines.

In addition, since any motion and/or the index of refraction can be
decomposed into a sum of deterministic (average) and random (fluctuating)
components, these random components can be accounted for via a random
filter representation as opposed to a deterministic filter representation. For
example, by using a systems theory approach, surface, volume, and/or bottom
reverberation returns can be modeled as the outputs from linear filters. In
addition, target returns can also be modeled as filter outputs. Furthermore,
different transmit signals and transmit and receive far-field directivity
functions can easily be coupled to various models (i.e., transfer functions) of
the random, inhomogeneous ocean medium in a straightforward and logical
fashion in order to study problems in pulse propagation in random media,
underwater acoustic communication, target detection, and parameter es-
timation using various space—time signal-processing algorithms.
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Fundamentals of Linear,
Time-Variant, Space-Variant Filters

2.1 DETERMINISTIC FILTERS

2.1.1 Impulse Response and Transfer Functions

A linear, time-variant, space-variant filter, as depicted in Fig. 2.1-1, is
characterized by its corresponding time-varying, space-varying impulse
response h(t,ro;t,r). The function h(z,ry;t,r) describes the respohse of the
filter at time ¢ and spatial location r = (x, y, z) due to the application of a unit
impulse at time (t — 7), or 7 seconds ago, at a distance |r — r,| meters away,
where ry = (xq, Vo, Zo)- Note that

h(t,ro;t, 1) = h(t,r;t — 7,1 — 1) (2.1-1)

The impulse response function is also called the Green’s function.
The relationship between the input signal x(z, r) and the output signal y(t,r)
is given by

y(t,r) = j j x(t — 7,r — ro)h(t,ry; t,r)dr dr,, (2.1-2)

x(t, r) ——Po h(r,ro; t, r) ——» y(t, r)

FIG. 2.1-1 Representation of a linear, time-variant, space-variant filter.
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