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It was an act of desperation. For six years I had struggled with the blackbody theory. I knew
the problem was fundamental, and I knew the answer. I had to find a theoretical
explanation at any cost, except for the inviolability of the
two laws of thermodynamics.
Max Planck (letter to R. W. Wood, 1931)

If someone points out to you that your pet theory of the universe is in disagreement with
Maxwell’s equations—then so much the worse for Maxwell’s equations. If it is
found to be contradicted by observation—well, these experimentalists do
bungle things sometimes. But if your theory is found to be against the
second law of thermodynamics I can offer you no hope; there
is nothing for it but to collapse in deepest humiliation.
Sir Arthur Eddington (The Nature of the Physical World, 1929)



I PREFACE

This book has two primary aims. The first is to provide an accurate but accessible
introduction to the theory of chemical and phase thermodynamics as first enunciated by
J. Willard Gibbs. The second is to exhibit the transcendent beauty of the Gibbsian theory
as expressed in the mathematical framework of Euclidean and Riemannian geometry.

Both aims may seem unrealistic within the pedagogical constraints of a textbook for
undergraduates or beginning graduate students. However, the author believes that accurate
and thorough grounding in the Gibbsian viewpoint is not only the best introduction to
research-level thermodynamic applications, but also the low-barrier entryway to a remark-
ably simple and effective set of geometrical tools that make accurate thermodynamic
reasoning accessible to students with only modest mathematical training.

In attempting this amalgamation of Gibbsian and geometric concepts, I have adhered
closely in Parts I (Chapters 1-4) and II (Chapters 5—-8) to the actual content of the first-
semester physical chemistry course at the University of Wisconsin (Chem 561) for more
than two decades. This includes the usual topics pertaining to the pre-Gibbsian historical
development (Part I) and the final Gibbs synthesis of chemical and phase thermodynamics
(Part II), expressed in the traditional language of partial differential calculus. Aside from
certain subtle points of rigor and emphasis, the content of Chapters 1-8 can be closely
mapped onto other introductory thermodynamics expositions, such as the venerable
“Wisconsin” series of physical chemistry textbooks (as authored by Getman and Daniels
in 1931, Daniels and Alberty in the author’s student days, and Silbey, Alberty, and
Bawendi at present).

Part III (Chapters 9—13), in contrast, is quite novel, representing the first full textbook
exposition of the metric geometry of equilibrium thermodynamics as originally formulated
in a series of papers (1975—1978) by the author. Although this “thermodynamic geometry”
has seen extensive research applications in such diverse areas as optimal process control and
black hole thermodynamics, its many pedagogical and practical advantages have not been
sufficiently exhibited for beginning students of physical chemistry.

In a sense, the material of Part III is far the easiest to master, even though it is logically
equivalent to the traditional Gibbsian-based formalism outlined in Parts I and II. Indeed, it
is conceivable that a motivated high school student with only basic skills in Euclidean geo-
metry could reasonably begin with Part III, proceeding immediately to derive complex
thermodynamic relationships with confidence and accuracy! (The only “trick” is to learn
how to associate the geometrical distances or angles with measurable thermodynamic
properties or equivalent partial differential expressions of Parts I and II, as illustrated in
Fig. 11.2.) However, thoughtful students would undoubtedly find this short cut to be exces-
sively “magical” if insufficiently supported by the historical and physical background of
Parts I and II. Hence, Part III does not attempt to revisit all the topics of Parts I and II,
as though this background were unfamiliar to the reader. Instead, the basic geometrical
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Xiv PREFACE

isomorphism is established with traditional thermodynamic concepts of assumed famili-
arity, allowing students to carry out desired geometrical re-derivations of thermodynamic
identities at their leisure (in analogy to the many examples provided in sidebars) while
focusing primarily on novel extensions of the thermodynamic geometry, including many
described here for the first time. Part III therefore assumes some familiarity with Parts I
and II, but students with alternative physical chemistry backgrounds (e.g., the textbooks
of Atkins, Engel-Ried, Levine, or Silbey—Alberty—Bawendi) should encounter little
difficulty in picking up the thread.

I wish to express sincere gratitude to many teachers and colleagues, present and past,
who have aided my understanding of thermodynamics and phase equilibria. These
include Steve Berry, Bob Bird, Phil Certain, Dan Cornwell, Chuck Curtiss, Tom Farrar,
John Ferry, Joop de Heer, Michael Fisher, Stan Gill, Joe Hirschfelder, Ed Jaynes, Fred
Koenig, Arthur Lodge, Ralf Ludwig, Mike McBride, Gil Nathanson, John Perepezko,
Tom Record, Peter Salamon, Jim Skinner, Laszlo Tisza, Worth Vaughan, Hyuk Yu, and
John Wheeler.

I also wish to express my appreciation to David Strasfeld, Gil Nathanson, John
Harriman, and (particularly) Bob Bird, who suggested helpful improvements to an early
draft; to Mark Wendt, who prepared the rendered graphics for the cover and Figure 11.1;
and to John Herbert, Phillip Thomas, and David Strasfeld (all former teaching assistants
in Chem 561), who assembled problems and exercises to accompany the book.

Neither the writing of this book nor the original research on which it is based could have
come about without the loving support of my family, for which I am deeply grateful.

FRANK WEINHOLD

Madison, Wisconsin
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I CHAPTER 1

Mathematical Preliminaries: Functions
and Differentials

1.1 PHYSICAL CONCEPTION OF MATHEMATICAL FUNCTIONS
AND DIFFERENTIALS

Science consists of interrogating nature by experimental means and expressing the
underlying patterns and relationships between measured properties by theoretical means.
Thermodynamics is the science of heat, work, and other energy-related phenomena.

An experiment may generally be represented by a set of stipulated control conditions,
denoted x,x,,...,x,, that lead to a unique and reproducible experimental result,
denoted z. Symbolically, the experiment may be represented as an input—output
relationship,

experiment
X1y X2se s 00 Xy ——— V4 (1.1)
(input) (output)
Mathematically, such relationships between independent (xy, x», . . ., x,,) and dependent (z)
variables are represented by functions
= 2(Xi; X555.2+3Xit) (1.2)

We first wish to review some general mathematical aspects of functional relationships, prior
to their specific application to experimental thermodynamic phenomena.

Two important aspects of any experimentally based functional relationship are (1) its
differential dz, i.e., the smallest sensible increment of change that can arise from corres-
ponding differential changes (dx,, dx,, ..., dx,) in the independent variables; and (2) its
degrees of freedom n, i.e., the number of “control” variables needed to determine z
uniquely. How “small” is the magnitude of dz (or any of the dx;) is related to specifics
of the experimental protocol, particularly the inherent experimental uncertainty that accom-
panies each variable in question.

For n = 1 (“ordinary” differential calculus), the dependent differential dz may be taken
proportional to the differential dx of the independent variable,

dz=7dx (1.3)

Classical and Geometrical Theory of Chemical and Phase Thermodynamics. By Frank Weinhold
Copyright © 2009 John Wiley & Sons, Inc.



4 MATHEMATICAL PRELIMINARIES: FUNCTIONS AND DIFFERENTIALS

where 7’ (the total derivative of z with respect to x) is evidently related to the differentials dz,
dx by the ratio formula

/

dz
7 =—

dx

The validity of (1.3), i.e., the existence of the derivative dz/dx in (1.4), is an essential requi-
site for application of the formalism of differential calculus. It is therefore important that the
magnitudes of differentials dz, dx be taken “sufficiently small” (but not “zero,” a meaning-
less and unphysical extrapolation in this context!) for the limiting ratio in (1.4) to have an
experimentally well-defined value, within usual limits of experimental precision.

For the general case of n variables, the expression for dz must include corresponding
“partial” contributions from each possible differential change dx;. This is expressed by
the important equation

(1.4)

i=1

{58
(R <axi) (16)

and where the subscript x denotes the list of all control variables held constant (i.e., all but
the “active” variable dx;). In general, each “partial” derivative (0z/0x;), in (1.5) [like each
ordinary derivative 7' in (1.3)] is itself a function of all variables on which z depends.
Equation (1.5) is referred to as the “chain rule” of partial differential calculus. It represents
the most fundamental relationship between differential changes for a system with n degrees
of freedom, and often forms the starting point for thermodynamic reasoning.

where

SIDEBAR 1.1: RECTANGLE EXERCISE

Exercise For a rectangle of sides x, y, find the function for area A = A(x, y), its partial
derivatives with respect to x and y, and its differential dA.

Solution The area function is A(x, y) = xy, so the partial derivatives are (0A/0x), = y and
(0A/0y), = x, and the differential is dA = y dx + x dy.

SIDEBAR 1.2: CIRCUMFERENCE EXERCISE

Exercise Suppose that the circumference of the Earth is snugly encircled with a band of
25,000-mile length. If the band is slightly lengthened by 10 ft, how high above the surface
does it rise? (Does the Earth’s precise circumference matter?)

Solution Circumference C and radius R are related by R = C/2#. To determine the
small radial change dR accompanying a change of circumference dC, we need R =
dR/dC = 1/27. We can therefore approximate the radial increase AR as AR = R'AC =
(1/2)(10 ft) = 1.59 ft (independent of C).




1.1 PHYSICAL CONCEPTION OF MATHEMATICAL FUNCTIONS AND DIFFERENTIALS 5

The important functional relationships of thermodynamic systems also permit second
derivatives to be evaluated. For example, the derivative function z} = z}(xy, X2, . . ., X,,) of
(1.6) can be differentiated with respect to a second variable x; to give the mixed second
derivative of z with respect to x; and x;,

oz, &z
= =) = I
ZU (&rj)X 8x,~8xj ( )

As first shown by J. W. Gibbs, the analytical characterization of thermodynamic equili-
brium states can be expressed completely in terms of such first and second derivatives of
a certain “fundamental equation” (as described in Section 5.1).

Note that differentials (dz) have fundamentally different mathematical character than do
functions (such as z, Z, Z”). The former are inherently “infinitesimal”” (microscopic) in scale
and carry multivariate dependence on all possible “directions” of change, whereas the latter
carry only macroscopic numerical values. Thus, it is mathematically inconsistent to write
equations of the form “differential = function” (or “differential = derivative”), just as it
would be inconsistent to write equations of the form “vector = scalar” or “apples =
oranges.” Careful attention to proper balance of thermodynamic equations with respect
to differential or functional character will avert many logical errors.

The student of thermodynamics must learn to cope with the functional, differential, and
derivative relationships in (1.2)—(1.7) from a variety of formulaic, graphical, and experi-
mental aspects. Let us briefly discuss each in turn.

Formulaic Aspect The student should be familiar with analytical formulas for deriva-
tives 7 of common algebraic and transcendental functions z, such as

7= xn’ ZI — nxn—l; or 7= un’ Zl = nun—lu/ (183)

z=¢€, 7 =¢5 or z=¢é 7 =éeu (1.8b)
/ 1 ’ u'

z=Inx, 7 =—; or z=Inu, 7 =— (1.8¢c)
X u

These formulas are also generally sufficient for partial derivatives (because holding some
terms constant in z can only simplify its differentiation!). Although such formulas may
prove useful in certain contexts (such as homework problems based on assumed functional
forms of forgiving mathematical simplicity), they are less useful than, for example, graphi-
cal or numerical techniques for dealing with realistic experimental data.

Graphical Aspect Functional relationships such as (1.1) and (1.2) can often be most
effectively depicted in graphical (or geometric model) form. Innovative graphical
methods were developed by Gibbs and others to display the complex thermodynamic
relationships of single- and multicomponent chemical systems, as illustrated in Fig. 1.1.
For thermodynamic purposes, the ability to “read” equations such as (1.2)—(1.5) through
graphical visualization is more important than facility with analytical formulas such
as (1.8a—c).

Graphical visualization of a function z or its derivative(s) is similar in the case of ordi-
nary (n = 1) and multivariate systems, except that the latter necessarily requires additional
dimensions. In a standard 2-dimensional graph, the height of the curve at given x,



