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Preface

Regression analysis has been one of the most widely employed and most important
statistical methods in applications and has been continually made more sophisti-
cated from various points of view over the last four decades. Among a number of
branches of regression analysis, the method of generalized least squares estimation
based on the well-known Gauss—Markov theory has been a principal subject, and is
still playing an essential role in many theoretical and practical aspects of statistical
inference in a general linear regression model. A general linear regression model is
typically of a certain covariance structure for the error term, and the examples are
not only univariate linear regression models such as serial correlation models, het-
eroscedastic models and equi-correlated models but also multivariate models such
as seemingly unrelated regression (SUR) models, multivariate analysis of variance
(MANOVA) models, growth curve models, and so on.

When the problem of estimating the regression coefficients in such a model
is considered and when the covariance matrix of the error term is known, as an
efficient estimation procedure, we rely on the Gauss—Markov theorem that the
Gauss—-Markov estimator (GME) is the best linear unbiased estimator. In practice,
however, the covariance matrix of the error term is usually unknown and hence the
GME is not feasible. In such cases, a generalized least squares estimator (GLSE),
which is defined as the GME with the unknown covariance matrix replaced by
an appropriate estimator, is widely used owing to its theoretical and practical
virtue.

This book attempts to provide a self-contained treatment of the unified theory of
the GLSEs with a focus on their finite sample properties. We have made the content
and exposition easy to understand for first-year graduate students in statistics,
mathematics, econometrics, biometrics and other related fields. One of the key
features of the book is a concise and mathematically rigorous description of the
material via the lower and upper bounds approach, which enables us to evaluate
the finite sample efficiency in a general manner.

In general, the efficiency of a GLSE is measured by relative magnitude of
its risk (or covariance) matrix to that of the GME. However, since the GLSE
is in general a nonlinear function of observations, it is often very difficult to
evaluate the risk matrix in an explicit form. Besides, even if it is derived, it is
often impractical to use such a result because of its complication. To overcome
this difficulty, our book adopts as a main tool the lower and upper bounds approach,

Xi



Xii PREFACE

which approaches the problem by deriving a sharp lower bound and an effective
upper bound for the risk matrix of a GLSE: for this purpose, we begin by showing
that the risk matrix of a GLSE is bounded below by the covariance matrix of the
GME (Nonlinear Version of the Gauss—Markov Theorem); on the basis of this result,
we also derive an effective upper bound for the risk matrix of a GLSE relative to
the covariance matrix of the GME (Upper Bound Problems). This approach has
several important advantages: the upper bound provides information on the finite
sample efficiency of a GLSE; it has a much simpler form than the risk matrix
itself and hence serves as a tractable efficiency measure; furthermore, in some
cases, we can obtain the optimal GLSE that has the minimum upper bound among
an appropriate class of GLSEs. This book systematically develops the theory with
various examples.

The book can be divided into three parts, corresponding respectively to Chap-
ters 1 and 2, Chapters 3 to 6, and Chapters 7 to 9. The first part (Chapters 1
and 2) provides the basics for general linear regression models and GLSEs. In
particular, we first give a fairly general definition of a GLSE, and establish its
fundamental properties including conditions for unbiasedness and finiteness of
second moments. The second part (Chapters 3—6), the main part of this book,
is devoted to the detailed description of the lower and upper bounds approach
stated above and its applications to serial correlation models, heteroscedastic mod-
els and SUR models. First, in Chapter 3, a nonlinear version of the Gauss-Markov
theorem is established under fairly mild conditions on the distribution of the
error term. Next, in Chapters 4 and 5, we derive several types of effective upper
bounds for the risk matrix of a GLSE. Further, in Chapter 6, a uniform bound
for the normal approximation to the distribution of a GLSE is obtained. The
last part (Chapters 7—9) provides further developments (including mathematical
extensions) of the results in the second part. Chapter 7 is devoted to making a
further extension of the Gauss—Markov theorem, which is a maximal extension
in a sense and leads to a further generalization of the nonlinear Gauss—Markov
theorem proved in Chapter 3. In the last two chapters, some complementary topics
are discussed. These include concentration inequalities, efficiency under elliptical
symmetry, degeneracy of the distribution of a GLSE, and estimation of growth
curves. :

This book is not intended to be exhaustive, and there are many topics that are
not even mentioned. Instead, we have done our best to give a systematic and unified
presentation. We believe that reading this book leads to quite a solid understanding
of this attractive subject, and hope that it will stimulate further research on the
problems that remain.

The authors are indebted to many people who have helped us with this work.
Among others, I, Takeaki Kariya, am first of all grateful to Professor Morris
L. Eaton, who was my PhD thesis advisor and helped us get in touch with the
publishers. I am also grateful to my late coauthor Yasuyuki Toyooka with whom
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[ published some important results contained in this book. Both of us are thankful
to Dr. Hiroshi Tsuda and Professor Yoshihiro Usami for providing some tables and
graphs and Ms Yuko Nakamura for arranging our writing procedure. We are also
grateful to John Wiley & Sons for support throughout this project. Kariya’s portion
of this work was partially supported by the COE fund of Institute of Economic
Research, Kyoto University.

Takeaki Kariya
Hiroshi Kurata
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Preliminaries

1.1 Overview

This chapter deals with some basic notions that play indispensable roles in the
theory of generalized least squares estimation and should be discussed in this
preliminary chapter. Our selection here includes three basic notions: multivariate
normal distribution, elliptically symmetric distributions and group invariance. First,
in Section 1.2, some fundamental properties shared by the normal distributions are
described without proofs. A brief treatment of Wishart distributions is also given.
Next, in Section 1.3, we discuss the classes of spherically and elliptically sym-
metric distributions. These classes can be viewed as an extension of multivariate
normal distribution and include various heavier-tailed distributions such as mul-
tivariate ¢+ and Cauchy distributions as special elements. Section 1.4 provides a
minimum collection of notions on the theory of group invariance, which facilitates
our unified treatment of generalized least squares estimators (GLSEs). In fact, the
theory of spherically and elliptically symmetric distributions is principally based
on the notion of group invariance. Moreover, as will be seen in the main body of
this book, a GLSE itself possesses various group invariance properties.

1.2 Multivariate Normal and Wishart Distributions

This section provides without proofs some requisite distributional results on the
multivariate normal and Wishart distributions.

Multivariate normal distribution. For an n-dimensional random vector y, let
L(y) denote the distribution of y. Let

w= (Ui, ..., 4n) € R" and X = (0;j) € S(n),

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)



2 PRELIMINARIES

where S(n) denotes the set of n x n positive definite matrices and a’ the transpo-
sition of vector a or matrix a. We say that y is distributed as an n-dimensional
multivariate normal distribution N,(u, ¥), and express the relation as

L(y) = Nu(u, ), (1.1)

if the probability density function (pdf) f(y) of y with respect to the Lebesgue
measure on R” is given by

1 I — n
fy) e p(—i(y—#)z '(.v—u)) (y € RY). (1.2)

= (27[)"/2|Z|l/2 X

When L(y) = N, (i, £), the mean vector E(y) and the covariance matrix Cov(y)
are respectively given by

E(y) =pn and Cov(y) = Z, (1.3)
where
Cov(y) = E{(y — )y — '}

Hence, we often refer to N, (u, X) as the normal distribution with mean u and
covariance matrix X.

Multivariate normality and linear transformations. Normality is preserved under
linear transformations, which is a prominent property of the multivariate normal
distribution. More precisely,

Proposition 1.1 Suppose that L(y) = N,(u, X). Let A be any m x n matrix such
that rank A = m and let b be any m x 1 vector. Then

Thus, when L(y) = N,(u, ¥), all the marginal distributions of y are normal. In
particular, partition y as

y=(¥') with y;j:n; x1 and n =n| +ny,
2
and let u and X be correspondingly partitioned as
T8 In X
= and ¥ = . 1.5
# (ﬂz) (221 )322) (1.3)

Then it follows by setting A = (/,,,0) : n; x n in Proposition 1.1 that
L(y1) = Np, (1, Z11).

Clearly, a similar argument yields £(y2) = Np,(¢2, £22). Note here that y;’s are
not necessarily independent. In fact,
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Proposition 1.2 [f L(y) = N, (i, Z), then the conditional distribution L(y1|y2) of
y1 given y; is given by

L(y11y2) = Ny, (01 + 1255, (32 — w2), T11.2) (1.6)
with
Yi2=%5 — )312)32_2'221-

It is important to notice that there is a one-to-one correspondence between (X1,
Y12, X92) and (212, ®, Xpy) with ® = )312):2_21. The matrix ® is often called
the linear regression coefficient of y; on y;.

As is well known, the condition X1 = 0 is equivalent to the independence
between y; and y;. In fact, if X2 = O, then we can see from Proposition 1.2 that

L(y1) = Lnly2) (= Ny, (11, Z11)),

proving the independence between y; and y,. The converse is obvious.

Orthogonal transformations. Consider a class of normal distributions of the form
N, (0, o%1,) with 2 > 0, and suppose that the distribution of a random vector y
belongs to this class:

L(y) € {N,(0,0°1,) | 6% > 0}. (1.7)

Let O(n) be the group of n x n orthogonal matrices (see Section 1.4). By using
Proposition 1.1, it is shown that the distribution of y remains the same under
orthogonal transformations as long as the condition (1.7) is satisfied. Namely, we
have

Proposition 1.3 If £(y) = N, (0, 0%1,) (6% > 0), then
L(Ty) = L(y) for any T € O(n). (1.8)

It is noted that the orthogonal transformation a — I'a is geometrically either the
rotation of a or the reflection of a in R”. A distribution that satisfies (1.8) will be
called a spherically symmetric distribution (see Section 1.3). Proposition 1.3 states
that {N,,(O.crll,,) | o> 0} is a subclass of the class of spherically symmetric
distributions.

Let | A| denote the Euclidean norm of matrix A with

IAl* = tr(A’A),
where tr(-) denotes the trace of a matrix -. In particular,
la)? = d'a

for a vector a.



4 PRELIMINARIES
Proposition 1.4 Suppose that £L(y) € {N,(0,021I,) | 62 > 0}, and let

x =yl and z=y/lIyll with |ly|>='y. (1.9)
Then the following three statements hold:

(1) E(xz/az) = )(3, where xn2 denotes the X2 (chi-square) distribution with
degrees of freedom n;

(2) The vector z is distributed as the uniform distribution on the unit sphere U(n)
in R", where

Un) ={u e R" | |lull = 1}
(3) The quantities x and z are independent.

To understand this proposition, several relevant definitions follow. A random vari-
able w is said to be distributed as X,%, if a pdf of w is given by

1
— W
2721 (n/2)

where ["(a) is the Gamma function defined by

fw) = I lexp(—w/2) (w > 0), (1.10)

o0
F(a):/ t“le7'dr (a > 0). (1.11)
0

A random vector z such that z € Z4(n) is said to have a uniform distribution on
U(n) if the distribution £(z) of z satisfies

L(T'z) = L(z) for any T € O(n). (1.12)

As will be seen in the next section, statements (2) and (3) of Proposition 1.4
remain valid as long as the distribution of y is spherically symmetric. That is, if y
satisfies L(I'y) = L(y) for all ' € O(n) and if P(y =0) =0, then z = y/| y| is
distributed as the uniform distribution on the unit sphere /(n), and is independent
of x = ||yl

Wishart distribution. Next, we introduce the Wishart distribution, which plays a
central role in estimation of the covariance matrix £ of the multivariate normal
distribution Nj(u, X). In this book, the Wishart distribution will appear in the
context of estimating a seemingly unrelated regression (SUR) model (see Example
2.4) and a growth curve model (see Chapter 9).

Suppose that p-dimensional random vectors yy, ... , y, are independently and
identically distributed as the normal distribution N, (0, L) with £ € S(p). We call
the distribution of the matrix

n
W=3 i
=1
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the Wishart distribution with parameter matrix ¥ and degrees of freedom n, and
express it as

LW) = W,(Z,n). (1.13)
When n > p, the distribution W,(%, n) has a pdf of the form

. 1 nmp1 tr(We-y
f(W)_2np/2rp(n/2)|z|n/2|W| ; exp(—f>, (1.14)

which is positive on the set S(p) of p x p positive definite matrices. Here I'",(a)
is the multivariate Gamma function defined by

P 3
1 —1
[p@ =7P» VAT (a _ JT) (a > P - ) (1.15)
j=1

When p = 1, the multivariate Gamma function reduces to the (usual) Gamma
function:

I'i(a) =T(a).
If W is distributed as W,(Z, n), then the mean matrix is given by
E(W)=nX.

Hence, we often call W, (X, n) the Wishart distribution with mean nX and degrees
of freedom n. Note that when p = 1 and £ = 1, the pdf f(W) in (1.14) reduces to
that of the X2 distribution X,%, that is, Wi(1,n) = x,f. More generally, if L(w) =
Wl((rz, n), then

L(w/o?) = x2. (1.16)
(See Problem 1.2.2.)

Wishart-ness and linear transformations. As the normality is preserved under
linear transformations, so is the Wishart-ness. To see this, suppose that L(W) =
W,(Z, n). Then we have

Loy =LY vy,
j=1

where y;’s are independently and identically distributed as the normal distribution
N, (0, ). Here, by Proposition 1.1, for an m x p matrix A such that rankA =
m, the random vectors Ay, ..., Ay, are independent and each Ay; has N,(0,
AX A’). Hence, the distribution of

n n
YAy =Ad vy | A
Jj=1 j=1



