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PREFACE

Static bifurcation theory deals with the changes that occur in the struc-
ture of the set of zeros of a mapping as parameters in the mapping are varied,
while dynamic bifurcation theory is concerned with the changes that occur
in the structure of the limit sets of solutions of differential equations as pa-
rameters in a vector field are varied. Extensive research on the theoretical
characterization of their behavior has been conducted. In parallel, the numer-
ical analysis and related numerical algorithms for computing the associated
solutions have been developed.

The Second International Conference on Bifurcation Theory and its Nu-
merical Analysis was successfully held in Xi’an, China, June 29-July 3, 1998.
The first international conference of this series was held at the same place
ten years ago. Their aim was to bring together active researchers with dif-
ferent backgrounds to discuss recent and prospective advances in bifurcation
theory and its numerical analysis. Over seventy people from Canada, China,
France, Germany, Italy, Japan, Singapore, and the United States of America
attended the second conference and more than forty papers were presented on
a variety of subjects in Bifurcation Theory, Differential Equations, Dynamical
Systems, Nonlinear Analysis, Numerical Analysis, and their applications.

This book contains eighteen selected papers presented at the second con-
ference. They cover recent development of a wide range of theoretical and
numerical issues of the subjects mentioned above. They also involve applica-
tions to such important areas as fluid flows, elasticity, elastic-plastic solids,
neutron transport, robotics, activator-inhibitor modeling, and biology.

Financial support for the conference was generously provided by the State
Educational Ministry of China, the National Natural Science Foundation of
China, the State Key Basic Research Project, the U.S. Army Research Office-
Far-East, the U.S. Office of Naval Research-Asia, the U.S. Air Force Office
for Scientific Research/Asian Office of Aerospace Research and Development,
and the Numerical Algorithms Group (NAG) Itd., U.K. We would also like
to thank the local organizers at Xi’an Jiaotong University, China for their
hospitality. Especially, we would like to express our gratitude to the U.S.
Army Research Office-Far-East, the U.S. Office of Naval Research-Asia, and
the U.S. Air Force Office for Scientific Research/Asian Office of Aerospace
Research and Development for supporting publication of the present book.

Zhangxin Chen, Shui-Nee Chow and Kaitai Li
January 29, 1999
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Invariant Foliations of Overflowing Manifolds
for Semiflows in Banach Space

PETER BATES, KENING LU, AND CHONGCHUN ZENG

Abstract

In this paper, we prove that each normally hyperbolic overflowing
invariant manifold has a unique unstable manifold in a neighborhood
of the overflowing manifold and that this unstable manifold uniquely
persists under small perturbations of the semiflow. We prove that the
unstable manifold can be uniquely decomposed into a disjoint union of
C* submanifolds which are along the unstable direction. This family
of submanifolds forms an invariant foliation of the unstable manifold.

KEYWORDS: Invariant foliations, overflowing manifolds, unstable mani-
folds, semiflows.

1 Introduction

We consider a C! semiflow defined on a Banach space X; that is, it is con-
tinuous on [0,00) x X, and for each t > 0,7* : X — X is Ct, and

Tt o T%(z) = T' ()

for all t,s > 0 and z € X. A typical example is the solution operator for a
differential equation.

In [6], we studied the persistence of an overflowing manifold M (“nega-
tively invariant and the semiflow crosses the boundary transversally”) for the
semiflow T° under perturbations. We do not assume that M is compact or
finite dimensional. Also, M is not necessarily an imbedded manifold, but an
immersed manifold. In brief, our main results on the overflowing manifolds

may be summarized as follows. We assume that the immersed manifold M
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2 Bates, Lu and Zeng

does not twist very much locally, M is covered by the image under T* of a
subset a positive distance away from the boundary, DT* contracts along the
normal direction and does so more strongly than it does along the tangential
direction, and DT? has a certain uniform continuity in a neighborhood of
M. If the C' perturbation T of T* is sufficiently close to T*, then T has a
unique C' immersed overflowing manifold M near M. Furthermore, if 7" is
C* and a spectral gap condition holds, then M is C*.

In the present paper, we consider the case that the normal bundle of the
overflowing manifold is split into a stable bundle and an unstable bundle. We
assume that the linearized semiflow DT* contracts along the stable direction
and more strongly than it does along the tangential direction and expands
along the unstable direction more strongly than it does along the tangential
direction. We prove that each such overflowing manifold has a unique un-
stable manifold in a neighborhood of the overflowing manifold and that this
unstable manifold uniquely persists under any small perturbations of the
semiflow. We prove that the unstable manifold can be uniquely decomposed
into a disjoint union of C* submanifolds which forms an invariant foliation of
the unstable manifold. Each submanifold is a leaf or a fiber of the foliation.
Here, the invariance means that the preimage of each leaf under the semi-
flow is contained in a leaf. The existence of invariant foliations near compact
normally hyperbolic invariant manifolds for semiflows was established in (5].

Invariant foliations with invariant manifolds have become a fundamental
tool to study the qualitative properties of a flow or semiflow near invariant
sets. They are extremely useful in that they can be used to track the asymp-
totic behavior of solutions and to provide coordinates in which systems of
differential equations may be decoupled and normal forms derived. This the-
ory has a long history. In the 1950’s, Peixoto [28] used this technique to
study planar systems. Starting in the 1960’s, applying the invariant foliation
as a major tool, Anosov [1] proved the structural stability of hyperbolic sets
and Smale [30] and Palis and Smale [27] also used invariant foliations in the
proof of Q-stability. Later, Hirsch, Pugh, and Shub [17] extended this from
hyperbolic sets to normally hyperbolic invariant manifolds, but mainly for
finite dimensional cases. About the same time, Fenichel [12], [13] and [14]
independently proved similar theorems and also pioneered the use of invari-
ant foliations to handle some singular perturbation problems. For several
recent applications, see, for example, [11], [15], [16], [18], [19], [20], [21], [23],
[31], and [32]. Kirchgraber and Palmer [22] applied the invariant foliation
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technique to the linearization of finite dimensional systems. In [8], invariant
foliations are used to produce smooth conjugacy of flows on different center
manifolds.

In the infinite-dimensional setting, Ruelle [29] proved a result giving in-
variant stable and unstable fibers (leaves) almost everywhere on a compact
invariant set for a semiflow in Hilbert space. It was assumed that the lin-
earized time-t map is compact and injective with dense range. Mané [26]
extended Ruelle’s results to semiflows in Banach space, under the same con-
ditions on the time-t map.

Lu [25] used the foliation to prove the Hartman-Grobman theorem for
scalar parabolic equations and later in an abstract setting applicable to the
Cahn-Hillard equation with Bates [3]. Also, Chow, Lin, and Lu [10] con-
structed an invariant foliation near an invariant manifold.

Very recently, Li, McLaughlin, Shatah, and Wiggins [24] and Zeng [33]
used invariant foliations in the study of the existence of homoclinic orbits for
nonlinear Schrédinger equations.

Recently, Aulbach and Garay [2] used invariant foliations to study partial
linearization for noninvertible mappings near fixed points. Chen, Hale and
Tan [9] obtained invariant foliations near fixed points for C' semigroups in
Banach spaces.

We should mention that our results in this paper are not a trivial extension
of the results of Fenichel. Here, we had to overcome the difficulties caused by
the irreversibility of the semiflow and the noncompactness of the manifold,
which means we do not have a global tubular neighborhood of the manifold.
Our result, even in the case of finite dimension is new, giving the results for
an immersed overflowing manifold.

The proof for the existence and persistence of an unstable manifold of
an overflowing manifold is based on Hadamard’s graph transform, while the
proof for the existence of the unstable foliation of the unstable manifold is
based on Liapunov-Perron’s method. We first obtain results for maps, and
then apply them to semiflows.

2 Main Results

In this section, we introduce basic notation and hypotheses, and then state
our main results for maps and semiflows.

Let X be a Banach space and T € C*(X, X). Suppose M is a C' Banach
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manifold (with boundary removed) and ¢ : M — X is an immersion from M
into X.
For a subset A C X, and a > 0, let

B(A,a) ={z € X : d(z,A) <a}.
For mg € M, let B.(mg, a) denote the connected component of

P~ (B((mo), a))

containing my.

Definition 2.1 M is said to be overflowing if the following conditions hold

(1) There exist an open My C M and a homeomorphism u : M — M; such
that p(m) = T (¢(u(m))) for all m € M;

(2) There exists an r > 0 such that for any mg € M, Y(Bc(mo,T)) is
closed in X.

Condition (1) means that the image of 1(M;) under T covers Y(M).
Condition (2) essentially says that the ‘distance’ from (M) to the boundary
of ¥ (M) is at least r. Traditionally, a manifold is called overflowing for a
vector field if the vectors on the boundary point outside. We modified this
definition for maps, which ensures that when M is overflowing for a vector
field, it is so for the time-maps.

(H1) For each m € M there is a decomposition
X=X, oX X,

of closed subspaces with X"

m?

X, being transversal to (Dy(m))(T,, M),
where T,,,M is the tangent space of M at m. Furthermore, for any
my €M,

I, DT (Y(mo)) : X& — X&

mi mo mi

are isomorphisms for a = c,u, where mo = u(m;) € M, and 1%, s

the projection onto X with kernel X2 for B # «, and there exists
A €(0,1) such that

[T, DT (3 (mo))x;,, ||
< Amin{1, inf{|II7,, DT'(s(mo))z°| : z° € X, , |z¢| = 1}},
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and
Ainf {|II%,, DT ($(mo))a"| : z* € X3, |z*| = 1}

> max {1, ||II% DT (m) |xc || }-
Here 1I? =1 - 1I¢, — 117,

This hypothesis essentially says that the linearized map DT contracts
along the stable direction and more strongly than it does along the tangential
direction and expand along the unstable direction more strongly than it does
along the tangential direction. We do not require the families {X¢,}, {X%},
and {X?: } to be invariant. Note that {X¢} is an approximation of the
tangent space of (M), which is invariant.

In order to establish local tubular neighborhoods with a uniform size, in
the following we shall assume that the projections II%, for a = c,u,s are

Lipschitz in m and the manifold M does not ‘twist’ too much.
(H2) For any mg € M, my,m2 € B.(mo,7), m; # ma, and o = ¢, u, s,

(L5, = T3, |1 < Liv(ma) — ¢(mo)]

mi ma

and

[ (m1) — ¢(me) — 105, ($(m1) — Y(ma))|
¥ (m1) = h(mo)]

where 1 < L < ‘/5;1 and €; are constants.

Sel<1)

As an example, when M is a C? compact manifold imbedded in a Hilbert
space, the hypothesis (H2) holds if IT¢, is the orthogonal projection onto the
tangent space of ¥)(M) and r is chosen to be small enough. When M is a C!
manifold, this particular projection is only C° in m. However, if M is finite
dimensional and has countable basis, one may construct a C* approximation
of any C° family of projections. This issue is addressed in [7]. We do not
know if such approximations exists for general infinite dimensional manifolds.

Since we do not assume that M is compact or finite dimensional, for
technical reasons, we need to assume that 7', II¢,, IT%, and II¥, have some

m)

uniform properties:

(H3) (1) There is a constant B > 0 such that ||I%|| < B for all m € M,
and o = ¢, u, s;

(2) There exists g > 0 such that for anym € M and o = u, s,

1A% < ho,
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where A%, € L(X¢, X*) and A3, € L(X¢

m ’ m m?

X;,) are determined by
(DY(m))(Tm M) = (I + A7, + A7) X7

(3) For any n > 0, there exists € > 0, such that for any z,,z, €
B(y(Mi),€), |21 — 22| <,

DT (21) — DT (z2)|| < m;

(4) There are constants a > 0 and By > 0 such that
inf{|II7,, DT (¥(mo))z®| : 2°€ X5, ,[z°|=1}>a

and
IDT | By (a),m)ll < Ba.
|, DT (3 (m1))|xx || < By.

mq

fora=c¢,s.

Condition (2) implies that the space X¢, is an approximation of the tan-
gent space of ¢(M) at m with an error bounded by 1. Condition (3) au-
tomatically holds when (M) is contained in a compact set. Roughly, it is
an assumption on the uniform continuity of DT, but weaker than that. The
reason for this assumption is that the graph transform is a global transform
and some uniform estimates are needed.

We shall see that if Xy, is a good approximation of the tangent space of
¥ (M), then we have the existence and the persistence of unstable manifolds
of the overflowing manifolds.

In some cases, a persisting imbedded unstable manifold, instead of an
immersed manifold, is desired. To obtain a persisting imbedded unstable
manifold, we need not only the original overflowing manifold to be imbedded,
but also the following condition:

(H2’) For my,my € ' (B(¢(mq),7)), all the assumptions in (H2) hold.

Theorem 2.1 Suppose M is an overflowing manifold for the map T. As-
sume that (H1)-(H3)are satisfied. Let T € CY(X,X). When 1T = T||c
is sufficiently small on B(y(M.),r), there exists an unique overflowing C1
manifold W* for T in a neighborhood of (M), such that W* is along the
tangent and unstable subspaces.

W* = h(M x X*(e))
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where X(e) = {z* € X : |a%| <e,m € M} and h: M x X* = X a C!

immersion. Under the C° norm of h and T, h is Lipschitz with respect to i

To get higher smoothness of W*, we assume that the following “spectral
gap” condition holds

TS, DT (3 (mo))l x5, |

< M(inf{|TIS,, DT((mo))a?| 5 a° € X5, |z| = 1},

for all my; € M, mg = u(my) € My,i=1,2,---,k, and some 0 < A < 1.
The next result follows from [6]

Theorem 2.2 When T € C*(X,X) has uniformly bounded the i-th order
derivatives i = 1,2,...k, the unstable manifold W* is C*. When T €
C*Y(X,X), W* is also C*1.

Our next theorem is on the unstable foliation of the unstable manifold
W,
Theorem 2.3 For small € > 0 there ezists a unique family of C* submani-

folds {Wk(e) : m e M} of W¥(e) satisfying:

(1) For eachm € M, MNW}X* = {m} and W}* changes continuously with
respect to m.

(2) If my, ma € M, my # ma, Wi* O WA =0 and W* = Upepn W2 (e).
(3) Forme M, T :WprnT- (Wgt ) — Wit is a diffeomorphism.

(4) For z,y € W'%(¢), we have |[T~™(z) — T~ "(y)| — 0 ezponentially as
n — +00.

(5) For x € WX* m # my, we have |$__:((:))__TT:,,“((7:?)I — 0 exponentially as

n — +00.

We now consider the manifolds for semiflows. Let a C! map T and (M)
satisfy (H1)-(H3). Let T € C([0,+00) x X, X) be a semiflow, i.e.,

T° =1, THS = TtoT*, for t,s>0.

We assume that for all t > 0, T* € C'(X,X). Suppose there exists t; >
0 such that |[T% — T||c1(B(yp(ay),r)) < - From Theorem 2.1, when o is
sufficiently small, there exists a C'! unstable manifold * for T.

Furthermore, we assume
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(H4) For any n > 0, there exists ( > 0, such that for any z € B(¢y(M),r),
t € [0,¢], we have
T (z) — z| < 1.

Thus, we have

Theorem 2.4 The unstable manifold W* for Tt is the unstable manifold
for the semiflow T.

From Theorem 2.3, there is an unstable foliation W* = Umen Wit for

m

T, Furthermore, we have

Theorem 2.5 W"(e) = Uy,e Wi (€) is an invariant foliation for the semi-
flow Tt.

The proof of Theorem 2.1 consists of four main steps, which are based on
the Hadamard’s graph transformation:

(a) Coordinate Systems. We first introduce three coordinate systems
based on the splitting of the tangent bundle of the phase space X restricted
to )M, the normal bundle X* & X* and the local trivialization of the bundle,
then establish the fundamental estimates relating these coordinate systems.
Since ¢ is not an imbedding, we can not construct the tubular neighborhoods
as we did in [4]. However, since 9 does not locally twist the manifold M very
much, we are able to establish local tubular neighborhoods based on B.(m, )
as we did in [6] and to obtain basic estimates. The result on persistence is
obtained in the union all these local tubular neighborhoods. It may happen
that some points in this set do not have globally unique representations, but
this difficulty can be overcome.

(b) Invariant Cones. In this step, we establish the invariance of two types
of moving cones as we did in [6]. The arguments there can be carried over
here with little modification.

(c) Existence of Lipschitz Unstable Manifold. The method we use here is
the same as the one we used in [4] and [6]. We regard X* @ X* as a bundle
over X" and consider sections of this bundle in the tubular neighborhood.
Define the complete metric space I'* of Lipschitz sections. Then we construct
a “graph transform” F'* based on T, the perturbation of 7. Using the in-
variance of the cones, one can prove that F'* is a contraction and the fixed
point is the desired unstable manifold. One can also prove the continuous
dependence of the unstable manifold with respect to the perturbation 7. The
proof requires many estimates.
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(d) The Smoothness of the unstable manifold. The basic idea to show
the smoothness is to find a candidate for the tangent bundle of the unstable
manifold, which is invariant under the linearization DT, then to prove it
indeed is tangent to the unstable manifold. The arguments are based on the
idea of the Lipschitz jets which is borrowed from [17]. Since the trivialization
of the normal bundle of M is not available in a Banach space, the proof is
more complicated than for finite dimensional systems. We first define a space
of sections of the Lipschitz jet bundle. Then we construct a graph transform
based on the linearization DT and show that it has a unique fixed point
which gives the tangent space of the unstable manifold. A major difficulty
for finding the fixed point is that the space of sections of the Lipschitz jet
bundle is not complete. Finally, one can prove that the tangent bundle is C°.

The proof of Theorem 2.3 is based on the Liapunov-Perron approach.
This method was used in [10] to prove the existence of invariant foliations for
semiflows when a global flat coordinate system is available. In our case here,
there is not a global flat coordinate system on W* or in a neighborhood of
Y(M). However, each time we only construct a single fiber W** z € W,
Since the backword orbits of the points on W** converge to each other, for
k > 0, T~*(W2*) is in a small neighborhood so that the local Cartiasian
coordinate system works. This is not the case when constructing the unsta-
ble manifold. The existence of W* follows from the discrete version of the

variation of constant formula for differential equations.

The complete proof of these results will appear in [7).
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