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DIMENSION-LIKE CHARACTERISTICS OF INVARIANT
SETS IN DYNAMICAL SYSTEMS

VALENTIN AFRAIMOVICH AND JESUS URIAS
IICO-UASLP, A. Obregon 64

San Luis Potosi, SLP 78000

Mezico

jurias@cactus.iico.uaslp.mx

Abstract. The dimension theory of dynamical systems is certainly not
complete. Nevertheless, it has great achievements such as general theory
of the Hausdorff dimension of hyperbolic invariant measures (see [22] and
references therein).

Recently it was understood that sets of zero measure in the phase space
are responsible for such important phenomena as anomalous transport [9,
7]. It is unclear how to apply directly ergodic theory to study asymptotic
behavior of orbits in such a situation. One might hope that dimension-like
characteristics could help.

In our short lecture notes we did not describe many of those results:
we were concentrated mainly on the application of Carathéodory—Pesin
theory to dimensions for Poincaré recurrences. We think that this way is
useful to introduce some ideas and machinery of the dimension theory, such
that Moran geometric constructions, thermodynamic formalism, including
Bowen formula, etc.

We believe that a reader who goes through examples and ideas of proofs
in the lecture notes will be ready to study more serious literature and we
hope that some of the readers will be attracted to this interesting field.

1. Invariant sets as results of inductive procedures

In spite of the fact that dynamical systems are defined by a local rule, say
a map z — f(z) (it could be a system of ODE & = f(z), but in these
lectures we restrict ourself to the case of discrete time), and this rule is
often expressed in a simple form, the global behavior of orbits could be
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2 VALENTIN AFRAIMOVICH AND JESUS URIAS

amazingly complex. Here, an (semi-)orbit through an initial point zq is
[(zo) = U2, f'zs; a union of orbits Y is an invariant set: f(Y) C Y.
Complexity of such a behavior is reflected in the geometry of invariant
sets and can be measured by Hausdorff and box dimensions and other
dimension-like characteristics.

1.1. HAUSDORFF DIMENSION

Let X be a metric space with a distance d(z,y), z, y € X. For any subset
Z C X let {U;} be a finite or countable collection of open sets of diameter
less than € such that |JU; D Z; here diamU; := sup{d(z,y) : z,y € U;}.
For any a > 0 we introduce

m(a,e, Z) = {igf}Z(diamUi)a, (1)

where infimum is taken over all covers {U;} with diameter less than €, and

m(a, Z) = limm(a, ¢, Z), ()

the a—dimensional Hausdorff measure (the limit exists because of mono-
tonicity of m(a, €, Z) as a function of ¢€). It is simple to see that m(8, ¢, Z) <
e#~®m(a, e, Z), which implies that there exists a unique critical value
of a such that m(a,Z) = 0 if @« > a, and m(a,Z) = oo if @ < a,. The
quantity a, =: dimyg Z is called the Hausdorff dimension.

1.2. GEOMETRIC CONSTRUCTION

Many invariant sets are resulting from so-called geometric constructions
[22]. Let (0,9), @ C ©, = {0,...,p — 1}N be a subshift, a closed o
invariant subset of the full shift with p symbols. The word (ig,...,7,_1) is
admissible if the corresponding cylinder [ig,...,%,—1] has nonempty inter-
section with 2. Consider p closed subsets Ay, ..., A,_1 C R™. Define basic
sets A, .. i, which satisfy the following assumptions:

(A). Ay,...in_, are closed and nonempty if (ig,...,%,—1) is admissible.

(B) Aio,‘..,in_lj & Aio,...,in_u .7 = 07 ey P L

(C). diamA;, . ;. , — 0 as n — oo.

We can define now a nonempty set

o0
F = ﬂ U Bigeibn-i+ (3)
n=1

(2050-sin—1)

The closed set I’ becomes a Cantor set, provided that the following “sepa-
ration condition” hold
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(D). Aio;-v-,in—l mAjO,---;jn—l NF = () whenever (io, 23% ,7:11—1) #* (jo, Ty 7jn—1)-
The coding map x : 2 — F' is defined as follows: for any
w=(ig,...,ipn_1,...) EQ, x(w) =z ifz € N A, in_:-

The simplest constructions are of Moran type. In this case 2 = Q, and
basic sets satisfy additional axioms.

(M1). Every basic set is the closure of its interior.
(M2). For any n, IntA;, ., NIntAj . =0if
(%05« s8n—1) # (Jos- -+, Jn-1)
(M3). The basic set A;, ;. ,; is homeomorphic to A;y ;. .
(M4). There are numbers 0 < Aj<1,j=0,...,p—1, such that
diamAiO,m,in_hj = )‘j diamAio’m,in_l.
Moran proved that in this case dimyF = sg, where s = sg is the root of
the (Moran) equation

p—1
> x=1 (4)
1=0

Example 1.1 Let J be an invariant set of the map g : [0,1] — [0, 1],

z/Xo if z € [0, \g]
glz) = 0 if x € (Ao, 1 — A1) (5)
L -1 ifzell-Ayl]

where 0 < Mg < A} < 1, Ao + A1 < 1, consisting of all points of all orbits
belonging to [0, 1]. It is clear that J is a Cantor set.

The set J is constructed with the help of the contractions ug : [0,1] —
[0, 1],
u(z) = Xoz,  wi(z) =Mz +1- X,

such that g o u; = id on [0, 1]. For every word i = (wp,---,w;_1) € {0,1}¢,
define the sets

AWOa"')'LUi—l = Uy 0000 uwo([()? 1])7

i.e., the A—sets are basic sets of the geometric construction for the set J.
Moreover, diam Ay, ...w; ; = Awg -+ Aw,_, and

dist(Aio, Agl) = (1 — }\0 — /\1)/\11)0 s )\wi—l >0 (6)

where dist(z,y) = |z — y|. Thus, J is resulting from a Moran construction,
and dimpgJ = s, where s = s is the root of the equation

A+ A = 1. (7)
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To make (7) evident, consider the cover of J by basic sets of the n-th
generation. Then the sum Y _,(diam U;)® in (1), up to a constant, becomes

> H/\ = (Ag + 29" (8)

L0530 k=0

If @ > s, then (8) goes to zero as n — oo, that shows us that dimgJ < sg.
To get the opposite inequality, people use the technique of so—called Moran
covers [22], see below.

Similar formulas could be obtained in the case when not all words are
admissible, i.e., in the case of subshifts. In these cases Hausdorff dimen-
sions of invariant sets can be expressed in terms of topological pressure.
It was R. Bowen who introduced this quantity in the theory of dynamical
systems [22, 10].

1.3. TOPOLOGICAL PRESSURE

Let us remind the definition for subshifts (the definition for arbitrary dy-
namical systems can be found in [19]).
Let ) be a subshift, and v a real-valued continuous function on . Let

|w] -1

Z exp sup Z P(olw) |, (9)

lw|=n wE w -

where the sum is taken over all cylinders [g}_] C Q of length |w| = n. It is
proved in [27] that the limit

Pa(y) = lim. log Z,(4, ) (10)

exists. The limit is called the topological pressure of the function 3 on §2
with respect to o. It follows that if 9 = 0 then Pq(0) = hiop(o|S2), the
topological entropy.

Roughly speaking, the system (o, 2) has eltor™ different paths of tempo-

ral length n (with some accuracy), each of them “costs” exp (ZM : (U]UJ)>

units, and e"F2(¥) is the total price for passing through all of them.
It is known that topological pressure is independent of the metric (pre-
serving a given topology) and is invariant under topological conjugacy [19].
Let us calculate the topological pressure in the case where Q = {4, the
topological Markov chain with a p x p transition matrix A, and the function
#(w) depends only on the first symbol: ¥(w) = 1 (wo). In this case

n—1
Zn(h, Q) = D expy_ (ij) (11)
7=0

(iO ----- in—l)
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where the sum is taken over all 24-admissible words (ig,...,4i,_1). Set
P(i) =logp;, =0, ..., p—1, then

n—1
Zn(, )= Y ] ex (12)
(10ye-yin—1) k=0
It is not a difficult algebraic exercise to show that
Zn($,ws) = RB"'ET (13)
where R = (po,...,pp-1), E=(1,...,1) and
B = A -diag(po, - .., pp-1)- (14)

As a corollary of formula (14) we obtain that Pqo(t)) = log Ao where \g is
the spectral radius of the matrix B.

1.4. TOPOLOGICAL PRESSURE AND HAUSDORFF DIMENSION

Let us show now how the topological pressure is related to the Hausdorff
dimension. Assume that a set F' is modeled by a Moran construction and
the corresponding subshift is a topological Markov chain (o, 4). Choose a
cover of F' by basic sets of the n-th generation. Then,

n—1
Z (diamA;, . ;. ) = Z H)\%c

(2050 sin—1) (104 yin—1) k=0

n—1
= > expla) o(i;) (15)
(60s--mrin—1) =0
= Zn(OlQO,QA)
where @(ig,...,) = logXy. Zn(ap,Q4) =~ exp(nPq,(ap)). Hence,

Zn(ap,Qa) > 1if Po,(ap) > 0 and Z,(ap,Q4) < 1 if Po,(ap) < 0.
It follows that if o is the root of the (Bowen’s) equation

Pq,(ap) =0 (16)

then dimygF' < «ap. The opposite inequality can be proven by using the
technique of Moran covers and a dimension-like definition of topological
pressure, see below.
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1.4.1. Dimension-Like Definition of Topological Pressure
For a finite or a countable cover C of €2 by cylinders of lengths greater than
n and B € R let

|w|—1

2B 0,8 = Z exp | —fB|w| + sup Z Y(odw) | . (17)

[wlee w€(w]

It is proved in [22] that the topological pressure Py (1)) coincides with the
threshold value

Po(y) =sup{B: lim (inf{Z(8,$,C,9):|c| >n}) =oc0}. (1)

1.4.2. Moran Covers

We describe them in slightly different form than in [22]. Given an open ball
B C R™, a basic set A, ;. , is called B-related if A;y ;. , N B # 0,
diamA;, .. ;. , > diam B, but diamA;; . ; , < diam B. Let R(B) be the
collection of all B-related basic sets. It is known that if diam|B| < 1 then
#R(B) < M where M is constant depending only on m. Therefore,

(diam B)® > % > (diamA)® (19)
AJER(B)

for any nonnegative . We consider now an arbitrary finite cover of F' by
balls B; of diameters ¢; < ¢, ¢ = 0, ..., N — 1. Then, collection R(B;),
1=0,..., N—1, form a cover, say C, of F' which is called the Moran cover.
Because of the inequality (19), we have

N-1 N-1

oo 1 .
>0 > (diamAg,.)% (20)

i=0 i=0 A,

where the second sum is taken over all B;-related basic sets. Given € > 0,
there is n = n(e) such that for any B;-related basic set Ajy,...i, we have
k > n(e). Moreover, n(e) — oo as € — 0. By using (15), we obtain that the
right hand side of (20) is bounded from below by

n—1
= Y =3 ¥ e Zma (21)
(i05reyin—1) k=0 (105e-sin—1)

where the sum is taken over all words (ig,...,i,—1) corresponding to B;—
related basic sets, for all 7.
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Let us rewrite the statistic sum (17) for this particular case:

|1
Z(B,alogh,,C, ) = > exp | —flul+a Y loghy, | (22)
Ay €C k=0

Assume that a < 8. = Po(alog \g), then, for any K > 0, there is ng =
no(K) such that Z(f.,alog\;,C,Q2) > K provided that n(e) > ng. It
follows that

|| -1
Z exp (« Z log i, ) > KePen() (23)
A el k=0

1.e,
N-1

>
1=

This implies that dimpy F' > Py (alog ). The opposite inequality has been
already obtained. Thus, we proved that dimy F = «p, the root of the Bowen
equation (16).

ePerl©), (24)

Sis

1.4.3. Ezamples
Example 1.2 Let us come back to Example 1.1. In this case A = < } i ) )
0 < Ap,1 < 1arerates of contraction, ¥ (ig, 1,...) = alog \j, = ap(ig,i1,...).

07 «
Thus, p; = A%, i=0,1, B = i(% i% ) and Pq,(ap) = log (A§ + A%).

The Bowen’s equation (16) becomes the Moran’s equations (7).

Example 1.3 Consider now the “golden mean” topological Markov chain

11

with the transition matrix A = ( . Assume that 0 < Ao < 1

1 0
are rates of contraction. Here again p; = A but the matrix B has the
A AT .. . y ;
form B = ( )\g /\01 ) The characteristic equation of matrix B is p? —
0

pAG = (AoA1)® = 0 and spectral radius is r = (1/2)(A§ ++/A2% + 4(AoA1)®).
Thus, the Hausdorff dimension of the corresponding set F is the root of the
Bowen’s equation log ((1/2)(A§ + /A2 +4(XA1)®)) = 0. If \g = A; = A
then the equation becomes alog A + log ((1 ++/5)/2), i.e., dimyF = oy =
log ((1++/5)/2)/ — log A. If you take into account that log ((1 + v/5)/2) =
htop, the topological entropy of the topological Markov chain (o,§4), then
we obtain the relation ([17])

htop

dimy F = .
A
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1.4.4. General Subshifts

It was shown in [22, 23] that the Bowen’s equation (16) holds not only for
topological Markov chains and not only for finitely many values of rates of
contraction. Consider Q C €, an arbitrary subshift with positive topologi-
cal entropy and let X : Q — RT be an arbitrary Holder continuous positive
function, such that A(w) < 1 for any w € Q. We may replace the Moran
axiom (M4) by the following assumptions: there are positive constants ¢
and € such that

lw|—1
diamA;, . ; |, > c inf Modw 25
oines 2 o [T A(e%0) (2)
|w|—-1 ‘
diam Ay . i, , <€ sup H A(o?w) (26)
welw] ;2

It was shown in [22, 23] that the dimyF = a,, where a. is the root of
the Bowen’s equation Pg(alog)) = 0. Similar formula was obtained for
conformal repellers [24] and in many other situations [22).

1.5. STICKY SETS RESULTING FROM GEOMETRIC CONSTRUCTIONS

An area preserving map f of the plane, possessing an infinite hierarchy
of islands-around-islands structure, has invariant sets of zero Lebesgue
measure on which it behaves similarly to multipermutative systems [T 1]

Let , = {0,1,...,p — 1} with the usual metric. The elements in 2y
will be denoted here by w.

1.5.1. Multipermutative Systems
A map T : Q, — Q, is said to be multipermutative if for every w € (2, the
sequence Tw is given by

Tw = (wo + po, w1 +p1(wo), ..., w; +pi(wo,...,wi—1), ...)

with p; : A - A for i > 0 and po € A= {0, ..., p—1}. At every
coordinate the addition is understood to be modulo p.

Example 1.4 The p-adic adding machine is a multipermutative system
(Qp, S) such that

Sw = (w0+1, w1 +$1(Ld0), s wi-i—si(wo,...,wi_l), ),
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with s;(wo, ..., wi—1) = 1 if (wo, ..., wi—1) is maximal and s;(wo, - .-,
w;_1) = 0 otherwise. The word (wo, ..., w;—1) is maximal when w; =p —1
foryj=0,...,9—1.

The p-adic adding machine is a minimal system, and, as it was shown
in [1], every minimal multipermutative system defined above is topological-
ly conjugate to the p-adic adding machine. The map T is not chaotic and
its topological entropy is zero. A set F on which f is topologically conju-
gate to T, nevertheless, may appear as a result of a Moran type geometric
construction.

1.5.2. Sticky Sets [1, 7]
Sticky sets are the sets of all limiting points of an infinite hierarchy of
islands.

A closed topological disk P is said to be an island of stability if f™(P) =
P for some integer n. We now give a definition of an infinite hierarchy of
islands-around-islands structure (sticky riddle) for the general case when
not all words 7 = (4, ...,in—1) might be admissible.

A collection P of islands {P; : i is Q-admissible} is said to be a sticky
riddle if the sets P; are pairwise disjoint, are contained in a compact set,
and

(i) for any island P, € P there is an island P; € P, [i| = |j|, such that

f(P) = P;;

(ii) if f(P;) = P; then for any admissible ik there is s € {0,1,...,¢ — 1}
such that f(Piy) = Pjs;

(iii) diam(P;) — 0 as |i| — oo;

(iv) for any w = (i9,41,...) € Q, if zp € Pyy,...5n_1» 7 > 0, then limy 00 Zn
exists;

(v) if z, € P;, yn € Pj, |i] = |j] = n, n > 0, and i # j at least for one
value of n then lim,, o0 Zn 7 limy 00 Yn-

These axioms reflect our understanding of an infinite islands—-around-islands

hierarchy:

(i) an island of the n—th generation is mapped into an island of the same
generation;

(i) if an island Py lies in the vicinity of the island P; then its image Pjs
lies in a vicinity of Pj;

(iii) to be packed into a compact set, the islands of the n—th generation
should be small if n >> 1;

(iv) there should be only one point of accumulation of islands F;, . ;,_, for
any fixed w = (40,...,n—1,...);

(v) for different points w = (wp,w1,...), w = (wy,w],...) in  the corre-
sponding points of accumulation of islands should be different.
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Let P be a sticky riddle. For any w = (ip,11,...) € 2 and any sequence
Tn € Py, i,_,, define z = 2(w) := limy_,00 Zn. The set A = {z(w) : w € N}
is said to be a sticky set. It is well defined thanks to Axioms (iii)—(v).

It was shown in [1] that f|A is topologically conjugate to a multiper-
mutative system, i.e., f|A has zero topological entropy.

1.5.3. Geometric Constructions for Sticky Sets

Some numerical observations [9] show that sometimes every island of sta-
bility P;, together with all its satellites P;;, belongs to a basic set A; of a
geometric construction. So, the set A can be resulted from this construction.
Axiomatically, the conditions for that can be expressed as follows.

(P1) There exists a collection of sets {A, : i is admissible} that are closed,
and for each admissible word 4, P;; C A, for every admissible word 7.

(P2) PN Aj; = 0 for every admissible i and 3. -

(P3) A;; C A, for every admissible words i and ij.

(P4) diamA;, ; _, — 0 as n — oo.

(P5) Separation axiom. A; NA; N F =0 if i # j, |i| = |j|, where

o
F = m U Aio...in_l

n=1 0, -ip—1

is admissible
Thus, if these axioms are satisfied, then A = F. Let us emphasize that
an invariant set with nonchaotic dynamics is resulted from a geometric
construction, modeled by a full subshift (o,,) or a subshift with positive
topological entropy. In other words, we have a “contradiction” between
temporal and spatial behavior of a system. To describe such a situation,
we need characteristics which could take into account both temporal and

spatial behavior. We introduce them in the next Lecture.

1.6. PROBLEMS

It is well-known that nonuniformity of hyperbolicity of invariant sets causes
a lot of troubles in the study of behavior of orbits. We believe that the
problems below reflect some of these difficulties by projecting them to field
of dimension theory.

1.6.1. Geometric Constructions Modeled by Topological Markov Chains
with some Contractions Rates \; = 1

The problem is to find necessary and sufficient conditions for the validity
of the following statement: the root of Bowen’s equation

Po,, (alog Xig) = 0 (27)
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is equal to dimy F, where F' is resulted from a Moran—type geometric
construction, modeled by the topological Markov chain (o,Q4), with con-
traction rates Ao, A1, ... Ap—1, in the case when A\; =1 for some 7’s.

1.6.2. Moran Geometric Constructions with Nonuniform Contraction.

In the situation of subsection 1.4.4, provided that A(w) = 1 for some w € €2,
find conditions under which the root of the Bowen’s equation (16) is equal
to the Hausdorff dimension of the set F' (the article [18] could be helpful).

2. Generalized Carathéodory construction and spectra of dimen-
sions for Poincaré recurrences

The examples of sticky sets in the previous lecture and the construction for
the Feigenbaum attractor below show us that, in general, we should apply
a wider notion than the Hausdorff dimension to describe simultaneously
behavior of orbits on invariant sets and their geometric origination. The
generalized Carathéodory construction allows us to do it.

2.1. CARATHEODORY-PESIN CONSTRUCTION [22]

We describe here a general approach developed by Ya. Pesin on the basis
of classical Carathéodory results. We describe it not in full generality but
in sufficient details for our purpose.

Assume that X is a metric space with a distance p, and F is a collection
of subsets of X such that for any Z C X and every € > 0 there is a finite
or countable subcollection {U;} of F with ¢ (U;) < € covering Z. Here
¥ : F — RT is a nonnegative function such that ¢(U) = 0 iff U = 0. In
a standard example F is the collection all open sets (or open balls) and
Y(U) = diamU.

Consider functions &, n : F — RT such that n(U) = 0 iff U = 0. We
assume also that for any § > 0 one can find € > 0 such that n(U) < ¢ for
any U € F with ¢(U) < e

The quadruple (F,,£&,n) is said to be a Carathéodory structure.

Given Z C X, let us consider a finite or countable cover G = {U;} of Z
by elements of F, with ¢(U;) < e. Then, introduce the sum

M (a,¢,G, Z) ZgU)n

and consider its minimum

M(ov e, 2) = inf > &(Ua)n(U:)*, (28)



