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Quantum Liquids



Preface

When the father of low temperature physics, Heike Kamerlingh Onnes, received the
Nobel prize in 1913 for his liquefaction of helium, he concluded his acceptance speech
by expressing the hope that progress in cryogenics would “contribute towards lifting
the veil which thermal motion at normal temperature spreads over the inner world
of atoms and electrons.” Speaking only months after Bohr’s publication of his atomic
model, and long before the advent of modern quantum mechanics, Onnes could not
have guessed how prophetic his words would prove. For of all the novelties revealed by
the quest for low temperatures, by far the most dramatic have been the phenomena
which result from the application of quantum mechanics to systems of many particles
in a word, of quantum statistics. And of these phenomena in turn, the most spectacular
by far are those associated with the generic phenomenon which is known, when it
occurs in a degenerate system of bosons, as Bose—Einstein condensation, or in a system
of degenerate fermions as Cooper pairing. In this phenomenon (which for brevity
I shall refer to generically in this Preface as “quantum condensation”), a macroscopic
number either of single particles or of pairs of particles — a fraction of order one of
the whole — are constrained to behave in exactly the same way, like a well-drilled
platoon of soldiers (sce the cover of Science, December 22, 1995). While the best-
known consequence of quantum condensation is superfluidity (in a neutral system like
4He) or superconductivity (in a charged one such as the electrons in metals), this is
actually only a special case of a much more general pattern of behavior which has
many other spectacular manifestations.

There are many good books on specific quantum condensates (liquid “He, the
alkali Bose gases, superconductors, liquid *He, etc.); I list a selection below. The
present book is in no sense intended as a substitute for these more specialized texts:
rather, by giving an overview of the whole range of terrestrial condensates and their
characteristic behaviors in what I hope are relatively simple and understandable terms.
I aim to put the individual systems in context and motivate the reader to study some
of them further.

This book is born of the conviction that it ought to be possible to present the
essentials of BoseEinstein condensation and Cooper pairing, and their principal con-
sequences, without invoking advanced formal techniques, but at the same time without
asking the reader to take anything on trust. Thus, the most advanced technique I have
introduced is the language of second quantization, which for those not alrcady prac-
tised in it is reviewed in a self-contained fashion in Appendix 2A. (However, most of
Chapters 1-4 can actually be read even without fluency in the second-quantization
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language.) While this policy has the drawback of precluding me from introducing the
Bogoliubov-de Gennes equations for superfluid Fermi systems (a technique which cer-
tainly needs to be learned, eventually, by anyone intending to do serious theoretical
research on such systems), I hope it will mean that the book is relatively easily read-
able by, for example, beginning graduate students in theory or by experimentalists
who do not wish to invest the time and effort to cope with more advanced formalism.

It will become clear to the reader from an early stage that I have at least two rather
strong convictions about the theory of quantum condensation which are not necessar-
ily shared by a majority of the relevant theoretical community. The first is that it is
neither necessary nor desirable to introduce the idea of “spontaneously broken U(1)
symmetry,” that is to consider (alleged) quantum superpositions of states containing
different total numbers of particles; rather, I take from the start the viewpoint first
enunciated explicitly by C.N. Yang, namely that one should simply think, in non-
technical terms, about the behavior of single particles, or pairs of particles, averaged
over the behavior of all the others, or more technically about the one- or two-particle
density matrix. At the risk of possibly seeming a bit obsessive about this, I have tried
to derive all the standard results not only for Bose but for Fermi systems using this
picture; the idea of spontaneous U (1) symmetry breaking is mentioned only to make
contact with the bulk of the literature.! My second strong conviction is that many
existing texts on superconductivity and/or superfluidity do not adequately empha-
size the distinction, which to my mind is absolutely crucial, between the equilibrium
phenomenon which in the context of a neutral superfluid is known as nonclassical
rotational inertia (or the Hess—Fairbank effect) and in a charged system underlies the
Meissner effect, and the metastable phenomenon of persistent currents in a neutral or
charged system; again, I have tried to place some emphasis on this, see in particular
Chapter 1, Section 1.5.

After two introductory chapters on the general phenomenon of quantum conden-
sation, in the remaining chapters I treat in order liquid *He (Chapter 3), the alkali
Bose gases (Chapter 4), “classic” (BCS) superconductivity (Chapter 5), superfluid
3He (Chapter 6), the cuprate superconductors (Chapter 7), and finally, in Chapter 8,
a miscellany of mostly recently realized quantum-condensed systems; in particular,
Section 8.4 deals with very recent experiments which have made the long-conjectured
“crossover” from Bose condensation to Cooper pairing a reality. The flavor of the var-
ious chapters is rather diverse, reflecting differences in the history and current status
of our understanding of these systems; in particular, while in Chapters 3-6 I try to
provide a reasonable theoretical basis for understanding the phenomena described, in
Chapters 7 and 8 the treatment is much more descriptive and cautious. It will be noted
that in Chapter 5 I have said essentially nothing about a topic which is a major part of
most textbooks, namely the way in which properties associated with the normal phase
(ultrasound absorption, tunnelling, spin susceptibility, etc.) are modified in the super-
conducting phase; this is a deliberate policy, so as not to distract attention from the
central topic of condensation. Whenever possible, I have tried to provide derivations
of standard results which differ somewhat from the conventional ones. While some of
these alternative arguments (e.g. that given in Section 5.7 for the Ginzburg-Landau

1 And in Appendix 5C as a purely formal device to streamline an otherwisc cumbrous algebraic step.
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formulation of superconductivity theory) may be less rigorous than the standard
derivations, I hope they may complement the latter by giving a more physical pic-
ture of what is going on.

Two further points of general policy are that in order to keep the focus in the
text on the main line of the argument, I have tried wherever possible to relegate
cumbrous mathematical derivations to appendices; and that I have for the most part
not attempted to trace the detailed history of the various theoretical ideas I discuss.
(Any colleagues who feel thereby slighted might want to note that even the original
BCS paper on superconductivity does not appear in the list of references!) Generally.
I have given specific theoretical references only at points where the discussion in the
text needs to be supplemented.

The original delivery date for the manuscript of this book was in the summer of
2004, but unforeseen events forced a postponement of 18 months. This was serendip-
itous, in the sense that during that period the topics covered in Sections 8.3 and 8.4
of Chapter 8 have undergone explosive experimental expansion, but the down side is
that in some other chapters which were written earlier, in particular Chapter 4, the
coverage of the most recent developments is not always complete.

It would be pointless to list all the good books which exist on individual quantum-
condensed systems. For what it is worth, here are some which I feel readers of this
book might find natural further reading:

e On helium-4: Pines and Nozicres (1966). Wilks (1967) is a very useful general

compendium.

e On the alkali Bose gases: Pethick and Smith (2002) and Pitacvskii and Stringari
(2003).

e On “classical” superconductivity: De Gennes (1966) and Tinkham (1975, revised
1996). These two are as useful today as when they were first published.

e On superfluid *He: Vollhardt and Wélfle (1990) is a very good compendium, but
hardly bedtime reading. The more general texts by Tsuneto (1998) and Annctt
(2004) have useful chapters.

e On cuprate superconductivity: see comuments in Chapter 7.

I would like to thank the many colleagues, at UIUC and elsewhere, who have
helped my understanding of the various systems treated in this book. Particular
thanks are due to Lance Cooper, Russ Giannetta, Laura Grecne, Myron Salamon
and Charlie Slichter for their comments on a first draft of Chapter 7, Sections 7.3
7.7 and to Man-Hong Yung for proof-reading parts of the manuscript: ncedless to
say, the responsibility for any remaining deficiencies is entirely mine. I am also very
grateful to Linda Thorman and Adam D. Smith for their sterling efforts in typing the
manuscript against a tight deadline. The writing of this book was supported by the
National Science Foundation under grants nos. DMR-99-86199, DMR-03-50842 and
PHY-99-07949.

Finally, I am very conscious that there are a number of points in this book
where, owing in part to publishers’ deadlines, I have not been able to spend all the
time and thought that I would ideally have liked.? There is no doubt also the usual

2This is particularly true of the last few paragraphs of Chapter 5, Section 5.7 and Chapter 7.
Section 7.5 and Appendix 7B.
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crop of hopefully minor mistakes, typographical errors, etc. In the hope that the book
may at some time in the future merit a revised edition, I shall be very grateful to any
readers who bring such deficiencies to my attention.

Urbana, IL
30 January 2006



List of Symbols (not defined)

| T> state o0 = +1

[ 1> state o0 = —1

Cy specific heat

¢ clectron charge

g gravitational acceleration [also interchannel coupling constant,
pp. 159-64]

H Hamiltonian

h Planck’s constant

h Dirac’s constant (= h/27)

J(r) current density

k wave vector

kgp Boltzmann’s constant

m particle mass

n particle density

P pressure

t time

T, nuclear spin relaxation time

on(po)  deviation of (quasi)particle occupation number from normal-state value

A optical wavelength [also dimensionless ratio Nag/as,, pp. 127 28:
relative channel weight, pp. 163 64]

1 micron (107%m)

" Bohr magneton

Ll permeability of free space

a conductivity

\ magnetic susceptibility

w angular frequency
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(A, B] commutator AB — BA 64

{A, B} anti-commutator AB + BA 66

|00 > doubly-unoccupied state of (kT,—k|) 244

11> doubly-occupied state of (kT, —k|) 244

He* excited state of ‘He atom 20

A hyperfine interaction constant 114

A(r) electromagnetic vector potential 25

a Bose/Fermi annihilation operator 64

at Bose/Fermi creation operator 64

ap bound-state radius 158

Abg background scattering length 160

as s-wave scattering length 118

Azp width of single-particle groundstate

in harmonic trap 127

Big group-theoretic notation for d,2_,2 symmetry 321

B lower critical field (of superconductor) 197

Beo upper critical field (of superconductor) 198

Bus characteristic hyperfine field 7

Ck coefficient of pair wave function 105, 175, 186

Cs speed of (hydrodynamic) sound 98

d constant value of d(f) in *He-A 260

d(f() (or a(ﬁ)) d-vector notation for spin triplet OP 260

dn/de density of states of both spins at Fermi

surface of metal 166
dp2_p2 most popular symmetry of cuprate

order parameter 321
Egp broken-pair energy 186
Egp excited-pair energy 186

*Symbols that are used only close to their definition are not included in the list below; note that
some of these duplicate symbols listed here.
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Ecp ground-pair energy 186

E; Josephson coupling energy 227

Ex BCS excitation energy, = (€2 + |Ax|?)1/2 181

Er recoil energy 146

f filling fraction 149

F Helmholtz free cnergy 104

F Helmholtz free energy density 104

F total atomic spin 7

f(pp’70’) Landau interaction function 230

F(ror'o’ : t) order parameter in Fermi systems 51

f(r;5) two-particle ingredient of Jastrow function 109

Fi Fourier transform of Cooper-pair wave

function F(p, R) with respect to relative

coordinate p 179
Fi cocfficient in expansion of Cooper-pair

wave function 217

£.(T) normal fraction 24

f.(T) superfluid franction 23

Fe# dimensionless Landau parameters 231

F.s(k) matrix form of Cooper pair wave function 258

JX5) nuclear dipolar coupling constant 266

Hp nuclear dipole energy 265

1. critical current of Josephson junction 227

I classical moment of inertia 22

K total dimer/molecule intrinsic angular

momentum 7

kg Fermi wave vector 365

kFT =dqrF 240

Ko matrix clements of time-reversal operator 220

{ mean free path 215

2 direction of apparent relative angular

momentum of pairs in 3He-A 273

L orbital angular momentum 22

11k cffective mass 231

iy projection of total atomic spin on z-axis 115

n time reverse of state n 213

N(0) density of states of one spin at

Fermi surface (= !/2(dn/de)) 176

N, condensate number 12, 34

p doping (of cuprates) (= no. of holes

per CuQOs unit) 290
Pr Fermi momentum 229
qTF Thomas-Fermi wave vector 171

R center-of-mass coordinate 49
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S(r,t) entropy density 83

t tunneling matrix element [also time, throughout| 147

T*(p) crossover line (in phase diagram of cuprates) 292

T. critical temperature 12

Tg Fermi temperature 11, 166
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U(r) external potential 25
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\% visibility (of interference fringes) 137
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Ve Landau critical velocity 101
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Vi pairing interaction (in BCS problem) 180

V, coefficient of BCS contact interaction 174
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Y(T) Yosida function 206
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'k time-reversal-breaking parameter 219
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Ec cutoff energy in BCS model 175
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1
Quantum liquids

A “quantum liquid” is, by definition, a many-particle system in whose behavior not
only the effects of quantum mechanics, but also those of quantum statistics, are
important. Let us examine the conditions for this to be the case.

Needless to say, if we wish to describe the actual structure of atoms or molecules,
then under just about any conditions known on Earth it is essential to use quantum mec-
hanics; a classical description fails to account for even the qualitative properties. How-
ever, if we consider the atoms or molecules as themselves simple entities and ask about
their dynamics or thermodynamics, we find that classical mechanics is often quite a
good approximation. A qualitative explanation of why this should be so goes as follows:
The fundamental novelty introduced by the quantum-mechanical description in the
motion of particles is that it is necessary to ascribe to the particle wave-like attributes,
resulting in phenomena such as interference and diffraction; the quantitative relation
between the “wave” and “particle” aspects is given by the de Broglie relation

A=h/p (1.0.1)

where p is the momentum of the particle and A the wavelength of the associated wave.
However, we know from classical optics that a wave will behave very much like a stream
of particles (“physical optics” becomes “geometrical optics”) if the wavelength A is
small compared to the characteristic dimension d of whatever is obstructing it (“one
cannot see around doors”); the condition to see wave-like effects is, crudely speaking

A>d (1.0.2)

In the case of a many-particle system it is perhaps not immediately clear what we
should identify as the length d, but for reasonably closely packed systcins. at least,
it seems reasonable to take it to be of the order of the interparticle distance, i.e. as
n~1/3 where n is the density (though see below). On the other hand, the typical value
of X is determined, according to Eqn. (1.0.1), by that of the momentumn p, which in
thermal equilibrium is determined by the mean thermal energy kgT:

D~ (7ILkBT)1/2 (1.0.3)

Combining Eqns. (1.0.1)-(1.0.3), we find that the conditions for quantum mechanical
effects to be important in the (center-of-mass) motion of a set of atoms or molecules
is roughly

kT < n,2/3h2/m (1.0.4)

where m is the mass of the atom or molecule in question.



