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Preface

Introduction

This is the text for the course in geometric mechanics taught by
the author for undergraduates in their third year of mathematics at
Imperial College London.

A brief history of geometric mechanics

The ideas underlying geometric mechanics first emerged in the prin-
ciples of optics formulated by Galileo, DesCartes, Fermat and Huy-
gens. These underlying ideas were developed in optics and particle
mechanics by Newton, Euler, Lagrange and Hamilton, with added
contributions from Gauss, Poisson, Jacobi, Riemann, Maxwell and
Lie, for example, then later by Poincaré, Noether, Cartan and oth-
ers. In many of these contributions, optics and mechanics held equal
sway.

Fermat’s principle (that light rays follow extremal time paths) is
complementary to Huygens principle (that a later wave front emerges
as the envelope of wavelets emitted from the present wave front).
Both principles are only models of reality, but they are models in the
best sense. Both are transcendent fabrications that intuited the re-
sults of a more fundamental principle (Maxwell’s equations) and gave
accurate predictions at the level of physical perception in their time.
Without being the full truth by being physically tenable themselves,
they fulfilled the tasks for which they were developed and they laid
the foundations for more fundamental theories. Light rays do not
exist and points along a light wave do not emit light. However, both
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principles work quite well in the design of optical instruments! In
addition, both principles are still interesting now as the mathemati-
cal definitions of rays and wave fronts, respectively, although neither
one properly represents the physical principles of optics.

The duality between tangents to extremal paths (Fermat) and
normals to wave fronts (Huygens) in classical optics corresponds in
geometric mechanics to the duality between velocities and momenta.
This duality between ray paths and wave fronts may remind us of the
duality between complementary descriptions of particles and waves
in quantum mechanics. The bridge from the wave description to the
ray description is crossed in the geometric-optical high-wavenumber
limit (kK — 00). The bridge from quantum mechanics to classical me-
chanics is crossed in another type of geometric-optical limit (A — 0)
as Planck’s constant tends to zero. In this course we arrive at the
threshold of the bridge to quantum mechanics when we write the
Maxwell-Bloch equations for the two-level qubit of quantum com-
puting. Although we do not cross over this bridge, its presence re-
minds us that the conceptual unity in the historical developments of
geometrical optics and classical mechanics is still of interest today.
Indeed, Hamilton’s formulations of optics and mechanics were guid-
ing lights in the development of the quantum mechanics of atoms and
molecules, and the quantum version of the Hamiltonian approach is
still used today in scientific research on the interactions of photons,
electrons and beyond.

Building on the earlier work by Hamilton and Lie, in a series of
famous studies during the 1890s, Poincaré laid the geometric founda-
tions for the modern approach to classical mechanics. One study by
Poincaré addressed the propagation of polarised optical beams. For
us, Poincaré’s representation of the oscillating polarisation states of
light as points on a sphere turns out to inform the geometric mechan-
ics of nonlinearly coupled resonant oscillators. Following Poincaré,
we shall represent the dynamics of coupled resonant oscillators as
flows along curves on manifolds whose points are resonantly oscillat-
ing motions. Such orbit manifolds are fibrations (local factorisations)
of larger spaces.
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Lie symmetry is the perfect method for applying Poincaré’s geo-
metric approach. In mechanics, a Lie symmetry is an invariance of
the Lagrangian or Hamiltonian under a Lie group; that is, under a
group of transformations that depend smoothly on a set of param-
eters. The effectiveness of Lie symmetry in mechanics is seen on
the Lagrangian side in Noether’s theorem. Noether’s theorem states
that each Lie symmetry of the Lagrangian in Hamilton’s principle
of least action implies a conservation law. On the Hamiltonian side,
Noether’s theorem states that each Lie symmetry of the Hamiltonian
summons a momentum map, which maps the canonical phase space
to the dual of the Lie symmetry algebra. When the Lie group is
a symmetry of the Hamiltonian, the momentum map is conserved
and the dynamics is confined to its level sets. Of course, there is
much more geometry in this idea than the simple restriction of the
dynamics to a level set. In particular, restriction to level sets of
momentum maps culminates in the reduction of phase space to man-
ifolds whose points are orbits of symmetries. In some cases, this
geometric approach to the separation of motions may produce com-
plete integrability of the original problem.

The language of Lie groups, especially Lie derivatives, is needed
to take advantage of Poincaré’s geometrical framework for mechan-
ics. The text also provides an introduction to exterior differential
calculus; so that the student will have the language to go further in
geometric mechanics. The lessons here are only the first steps — the
road to geometric mechanics is long and scenic, even beautiful, for
those who may take it. It leads from finite to infinite dimensions.
Anyone taking this road will need these basic tools and the language
of Lie symmetries, in order to interpret the concepts that will be met
along the way.

The approach of the text

The text surveys a small section of the road to geometric mechanics,
by treating several examples in classical mechanics, all in the same
geometric framework. These example problems include:

e Fermat’s principle for ray optics to travelling waves propa-
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gating by self-induced transparency (the Maxwell-Bloch equa-
tions);

e Bifurcations in the behaviour of resonant oscillators and po-
larised travelling wave pulses in optical fibres;

e The bead sliding on a rotating hoop, the spherical pendulum
and the elastic spherical pendulum. The approximate solu-
tion of the elastic spherical pendulum via a phase-averaged
Lagrangian shares concepts with molecular oscillations of CO,
and with 2nd harmonic generation in nonlinear laser optics;

e Divergenceless vector fields and stationary patterns of fluid flow
on invariant surfaces.

In each case, the results of the geometric analysis eventually reduce
to divergence free flow in R? along intersections of level surfaces of
constants of the motion. On these level surfaces, the motion is sym-
plectic, as guaranteed by the Marsden-Weinstein theorem [MaWe74].

How to read this book

The book is organised into six chapters and one appendix. Chapter
1 treats Fermat’s principle for ray optics in refractive media as a de-
tailed example that lays out the strategy of Lie symmetry reduction
in geometric mechanics to be applied in the remainder of the text.
Chapter 2 summarises the contributions of Newton, Lagrange and
Hamilton to geometric mechanics. Chapter 3 discusses Lie symme-
try reduction in the language of the exterior calculus of differential
forms. The strategy of Lie symmetry reduction laid out in Chapter 1
in the example of ray optics is applied to resonant oscillator dynam-
ics in Chapter 4, to the elastic spherical pendulum in Chapter 5 and
to a special case of the Maxwell-Bloch equations for laser excitation
of matter in Chapter 6. The Appendix contains a compendium of
example problems which may be used as topics for homework and
enhanced coursework.

The first chapter treats Fermat’s principle for ray optics as an
example that lays out the strategy of Lie symmetry reduction for
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all of the other applications of geometric mechanics discussed in the
course. This strategy begins by deriving the dynamical equations
from a variational principle and Legendre transforming from the La-
grangian to the Hamiltonian formulation. Then the implications of
Lie symmetries are considered. For example, when the medium is
symmetric under rotations about the axis of optical propagation,
the corresponding symmetry of the Hamiltonian for ray optics yields
a conserved quantity called skewness, which was first discovered by
Lagrange.

The second step in the strategy of Lie symmetry reduction is to
transform to invariant variables. Writing the ray optics Hamilto-
nian as a function of the axisymmetric invariants that are bilinear
in the optical phase space variables has the effect of quotienting out
the angular dependence by introducing a variant of the polar coor-
dinate representation. The transformation to bilinear axisymmetric
invariants is called the guotient map. The quotient map takes the
four-dimensional optical phase space into the three-dimensional real
space R3. The image of the quotient map in R3 is conveniently rep-
resented as the zero level set of a function. This zero level set is the
two-dimensional orbit manifold, on which each point represents a cir-
cle in phase space corresponding to the orbit of the axial rotations.

In the third step, the canonical Poisson brackets of the axisym-
metric invariants with the phase space coordinates produce Hamil-
tonian vector fields, whose flows on phase space yield the diagonal
action of the symplectic Lie group Sp(2,R) on the optical position
and momentum. The Poisson brackets of the axisymmetric invari-
ants close among themselves as linear functions of these invariants,
thereby yielding a Lie-Poisson bracket dual to the symplectic Lie al-
gebra sp(2,R), represented as divergenceless vector fields on R?. The
Lie-Poisson bracket reveals the geometry of the solution behaviour in
axisymmetric ray optics as flows along the intersections of the level
sets of the Hamiltonian and the orbit manifold in the R? space of
axisymmetric invariants. This is coadjoint motion.

In the final step, the angle variable is reconstructed. This angle
turns out to be the sum of two parts: one part is called dynamic,
because it depends on the Hamiltonian. The other part is called
geometric and is equal to the area enclosed by the solution on the
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orbit manifold.

The geometric-mechanics treatment of Fermat’s principle identi-
fies two momentum maps admitted by axisymmetric ray optics. The
first is the map from optical phase space (position and momentum
of a ray on an image screen) to their associated area normal to the
screen. This area is Lagrange’s invariant in axisymmetric ray optics;
it takes the same value on each image screen along the optical axis.
The second momentum map transforms from optical phase space to
the bilinear axisymmetric invariants by means of the quotient map.
Because this transformation is a momentum map, the quotient map
yields a valid Lie-Poisson bracket among the bilinear axisymmetric
invariants.

Chapter 2 treats the geometry of rigid-body motion from the
viewpoints of Newton, Lagrange and Hamilton, respectively. This
is the classical problem of geometric mechanics, which makes a nat-
ural counterpoint to the treatment in Chapter 1 of ray optics by
Fermat’s principle. The treatments of the rigid body by these more
familiar approaches also sets the stage for the introduction of the
flows of Hamiltonian vector fields and their Lie-derivative actions on
differential forms in Chapter 3.

The problem of a single, polarised, optical laser pulse propagating
as a travelling wave in an anisotropic, cubically nonlinear, lossless
medium is investigated in Chapter 4. This is a Hamiltonian system
in C2 for the dynamics of two complex oscillator modes (the two
polarisations). Since the two polarisations of a single optical pulse
must have the same natural frequency, they are in 1 : 1 resonance.
An S! phase invariance of the Hamiltonian for the interaction of
the optical pulse with the optical medium in which it propagates
will reduce the phase space to the Poincaré sphere, 52, on which
the problem is completely integrable. In Chapter 4, the fixed points
and bifurcations sequences of the phase portrait of this system on
S? are studied as the beam intensity and medium parameters are
varied. The corresponding Lie-symmetry reductions for the n : m
resonances is also discussed in detail.

Chapter 5 treats the swinging spring, or elastic spherical pendu-
lum, from the viewpoint of Lie-symmetry reduction. In this case,
averaging the Lagrangian for the system over its rapid elastic os-
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cillations introduces the additional symmetry needed to reduce the
problem to an integrable Hamiltonian system. This reduction results
in the three-wave surfaces in R? and thereby sets up the framework
for predicting the characteristic feature of the elastic spherical pen-
dulum, which is the step-wise precession of its swing plane.

Chapter 6 treats the Maxwell-Bloch laser-matter equations for
self-induced transparency. The Maxwell-Bloch equations arise from
a variational principle obtained by averaging the Lagrangian for the
Maxwell-Schrodinger equations. As for the swinging spring, aver-
aging the Lagrangian introduces the Lie symmetry needed for re-
ducing the dimensions of the dynamics and thereby making it more
tractable. The various Lie-symmetry reductions of the real Maxwell-
Bloch equations to two-dimensional orbit manifolds are discussed and
their corresponding geometric phases are determined in Chapter 6.

Exercises are sprinkled liberally throughout the text, often with
hints or even brief explicit solutions. These are indented and marked
with % and A, respectively. Moreover, the careful reader will find
that many of the exercises are answered in passing somewhere later
in the text in a more developed context.

Key theorems, results and remarks are placed
into frames (like this one).

The Appendix contains additional worked problems in geomet-
ric mechanics. These problems include the linear oscillator, planar
pendulum, bead sliding on the rotating hoop, spherical pendulum,
rigid body and the Duffing oscillator, as well as the study of pairs
of nonlinearly-coupled resonant oscillators, second-harmonic genera-
tion and the dynamics of the rigid body with a flywheel, all treated
from the viewpoint of geometric mechanics.
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