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PREFACE

This text was written to fill the missing niche of a textbook that teaches Valence Bond
(VB) theory. The theory that once charted the mental map of chemists had been
abandoned since the mid-1960s for reasons that are discussed in Chapter 1. Conse-
quently, the knowledge of VB theory and its teaching became gradually more scarce,
and was effectively eliminated from the teaching curriculum in much of the chemical
community. Nevertheless, a few elements of the theory somehow survived as the
Lingua Franca of chemists, mostly due to the use of the Lewis bonding paradigm and
the post-Lewis concepts of hybridization and resonance. But there is much more to
VB theory than these concepts and ideas. Since its revival in the 1980s, VB theory has
been enjoying a renaissance that is characterized by the development of a growing
number of ab initio methods that can be applied to chemical problems of bonding
and reactivity. Alongside these methodology developments, there has been a surge
of new post-Pauling models and concepts that have rendered VB theory useful
again as a central theory in chemistry; especially productive concepts arose by
importing insights from molecular orbital (MO) theory and making the VB
approach more portable and easier to apply. Following a recent review article by
us (1) and two essays on VB theory and its relation to MO theory (2,3), we felt that
the time had come to write a textbook dedicated to VB theory, its applications, and
special insights.

This text is aimed at a nonexpert audience and designed as a tutorial material for
teachers and students who would like to teach and use VB theory, but who otherwise
have basic knowledge of quantum chemistry. As such, the primary focus of this
textbook is a qualitative insight of the theory and ways to apply this theory to the
problems of bonding and reactivity in the ground and excited states of molecules.
Almost every chapter contains problem sets followed by answers. These problems
provide the teachers, students, and interested readers with an opportunity to practice
the art of VB theory. We will be indebted to readers—teachers—students for comments
and more suggestions, which can be incorporated into subsequent editions of this
book that we hope, will follow.

Another features in this book is the description of the main methods and programs
available today for ab initio VB calculations, and how actually one may plan and run
VB calculations. In this sense, the book provides a snapshot of the current VB
capabilities in 2007. Regrettably, much important work had to be left out. The readers
interested in technical and theoretical development aspects of VB theory may wish to
consult two other monographs (4,5).

xiii



xiv  PREFACE

The two authors owe a debt of gratitude to colleagues and friends who read the
chapters and provided useful comments and insights. In particular, we acknowledge
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1 A Brief Story of Valence Bond
Theory, Its Rivalry with
Molecular Orbital Theory,

Its Demise, and Resurgence

The new quantum mechanics of Heisenberg and Schrédinger provided
chemistry with two general theories, one called valence bond (VB) theory
and the other molecular orbital (MO) theory. The two theories were developed
at about the same time, but have quickly diverged into rival schools that have
competed, sometimes fervently, on charting the mental map and epistemology
of chemistry. In brief, until the mid-1950s VB theory had dominated chemistry,
then MO theory took over while VB theory fell into disrepute and was almost
completely abandoned. The more recent period from the 1980s onward marked
a comeback of VB theory, which has since then been enjoying a renaissance
both in the qualitative application of the theory and in the development of new
methods for its computer implementation (1). One of the great merits of VB
theory is its pictorially intuitive wave function that is expressed as a linear
combination of chemically meaningful structures. It is this feature that has
made VB theory so popular in the 1930s—1950s, and it is the same feature that
underlies its temporary demise and ultimate resurgence. This monograph
therefore constitutes an attempt to guide the chemist in the use of VB theory, to
highlight its insight into chemical problems, and some of its state-of-the-art
methodologies.

Since VB is considered, as an obsolete theory, we thought it would be
instructive to begin with a short historical account of VB theory, its rivalry
against the alternative MO theory, its downfall, and the reasons for the past
victory of MO and the current resurgence of VB theory. Part of this review is
based on material from the fascinating historical accounts of Servos (2) and
Brush (3,4). Other parts are not official historical accounts, but rational
analyses of historical events; in some sense, we are reconstructing history in a
manner that reflects our own opinions and the comments we received from
colleagues, as well as ideas formed during the writing of the recent
“conversation” the two authors have published with Roald Hoffmann (5).

A Chemist’s Guide to Valence Bond Theory, by Sason Shaik and Philippe C. Hiberty
Copyright © 2008 John Wiley & Sons, Inc.



2 A BRIEF STORY OF VALENCE BOND THEORY

1.1 ROOTS OF VB THEORY

The roots of VB theory in chemistry can be traced back to the famous paper of
Lewis The Atom and The Molecule (6), which introduces the notions of electron-
pair bonding and the octet rule (initially called the rule of eight) (6). Lewis was
seeking an understanding of weak and strong electrolytes in solution (2). This
interest led him to formulate the concept of the chemical bond as an intrinsic
property of the molecule that varies between the covalent (shared-pair) and
ionic extremes. In this article, Lewis uses his recognition that almost all known
stable compounds had an even number of electrons as the rationale that led
him to the notion of electron pairing as a mechanism of bonding. This and the
fact that helium was found by Mosely to possess only two electrons made it
clear to Lewis that electron pairing was more fundamental than the octet rule;
the latter rule was an upper bound for the number of electron pairs that can
surround an atom (6). In the same paper, Lewis invents an ingenious symbol
for electron pairing, the colon (e.g., H:H), which enabled him to draw
electronic structures for a great variety of molecules involving single, double,
and triple bonds. This article predated new quantum mechanics by 11 years
and constitutes the first effective formulation of bonding in terms of the
covalent—ionic classification, which is still taught today. This theory has
formed the basis for the subsequent construction and generalization of VB
theory. This work eventually had its greatest impact through the work of
Langmuir, who articulated the Lewis model, applied it across the periodic
table, and invented catchy terms like the octet rule and the covalent bond (7).
From then onward, the notion of electron pairing as a mechanism of bonding
became widespread and initiated the ‘‘electronic structure revolution™ in
chemistry (8).

The overwhelming chemical support of Lewis’s idea presented an exciting
agenda for research directed at understanding the mechanism by which an
electron pair could constitute a bond. This, however, remained a mystery until
1927 when Heitler and London went to Zurich to work with Schrodinger. In
the summer of the same year, they published their seminal paper, Interaction
Between Neutral Atoms and Homopolar Binding (9,10). Here they showed that
the bonding in dihydrogen (H,) originates in the quantum mechanical
“resonance’” interaction that is contributed as the two electrons are allowed
to exchange their positions between the two atoms. This wave function and the
notion of resonance were based on the work of Heisenberg (11), who showed
earlier that, since electrons are indistinguishable particles, then for a two
electron systems, with two quantum numbers » and m, there exist two wave
functions that are linear combinations of the two possibilities of arranging
these electrons, as shown Equation 1.1.

Wi = (1/V2)[00(1)@n(2) + €,(2)p(1)] (1.1a)
Vs = (1/V2)[0,(1)0n(2) — €,(2),(1)] (1.1b)
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Scheme 1.1

As demonstrated by Heisenberg, the mixing of [¢,(1)¢,,(2)] and [¢,.(2)¢,.(1)] led
to a new energy term that caused a splitting between the two wave functions
¥, and Wg. He called this term “‘resonance” using a classical analogy of two
oscillators that, by virtue of possessing the same frequency, form a resonating
situation with characteristic exchange energy.

In modern terms, the bonding in H, can be accounted for by the wave
function drawn in 1, in Scheme 1.1. This wave function is a superposition of
two covalent situations in which, in the first form (a) one electron has a spin-up
(a spin), while the other has spin-down (B spin), and vice versa in the second
form (b). Thus, the bonding in H, arises due to the quantum mechanical
“resonance” interaction between the two patterns of spin arrangement that are
required in order to form a singlet electron pair. This “resonance energy”
accounted for ~75% of the total bonding of the molecule, and thereby
projected that the wave function in 1, which is referred to henceforth as the
HL-wave function, can describe the chemical bonding in a satisfactory manner.
This “resonance origin” of the bonding was a remarkable feat of the new
quantum theory, since until then it was not obvious how two neutral species
could be at all bonded.

In the winter of 1928, London extended the HL-wave function and drew the
general principles of the covalent bonding in terms of the resonance interaction
between the forms that allow interchange of the spin-paired electrons between
the two atoms (10,12). In both treatments (9,12) the authors considered ionic
structures for homopolar bonds, but discarded their mixing as being too small.
In London’s paper, there is also a consideration of ionic (so-called polar)
bonding. In essence, the HL theory was a quantum mechanical version of
Lewis’s electron-pair theory. Thus, even though Heitler and London did their
work independently and perhaps unaware of the Lewis model, the HL-wave
function still precisely described the shared-pair bond of Lewis. In fact, in his
letter to Lewis (8), and in his landmark paper (13), Pauling points out that the
HL and London treatments are ‘entirely equivalent to G.N. Lewis’s successful
theory of shared electron pair ...”. Thus, although the final formulation of the



