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Preface

In September 2003 we started writing a research expository paper on
“Finite Gelfand pairs and their applications to probability and statistics”
[43] for the proceedings of a conference held in Batumi (Georgia). After
a preliminary version of that paper had been circulated, we received sev-
eral emails of appreciation and encouragement from experts in the field.
In particular, Persi Diaconis suggested that we expand that paper to a
monograph on Gelfand pairs. In his famous 1988 monograph “Group rep-
resentations in probability and statistics” [55] there is a short treatement
of the theory of Gelfand pairs but, to his and our knowledge, no book
entirely dedicated to Gelfand pairs was ever written. We thus started
to expand the paper, including some background material to make the
book self-contained, and adding some topics closely related to the kernel
of the monograph. As the “close relation” is in some sense inductive,
we pushed our treatement much further than what Persi was probably
expecting. In all cases, we believe that our monograph is in some sense
unique as it assembles, for the first time, the various topics that appear
in it.

The book that came out is a course in finite harmonic analysis. It is
completely self-contained (it only requires very basic rudiments of group
theory and of linear algebra). There is also a large number of exercises
(with solutions or generous hints) which constitute complements and/or
further developments of the topics treated.

For this reason it can be used for a course addressed to both advanced
undergraduates and to graduate students in pure mathematics as well as
in probability and statistics. On the other hand, due to its completeness,
it can also serve as a reference for mature researchers.

xi



xii Preface

It presents a very general treatment of the theory of finite Gelfand
pairs and their applications to Markov chains with emphasis on the
cutoff phenomenon discovered by Persi Diaconis.

The book by Audrey Terras [220], which bears a similar title, is
in some sense orthogonal to our monograph, both in style and con-
tents. For instance, we do not treat applications to number theory,
while Terras does not treat the representation theory of the symmetric
group.

We present six basic examples of diffusion processes, namely the ran-
dom walk on the circle, the Ehrenfest and the Bernoulli-Laplace models
of diffusion, a Markov chain on the ultrametric space, random trans-
positions and random matchings. Each of these examples bears its own
peculiarity and needs specific tools of an algebraic/harmonic-analytic/
probabilistic nature in order to analyze the asymptotic behavior of the
corresponding process.

These tools, which we therefore develop in a very self-contained pre-
sentation are: spectral graph theory and reversible Markov chains,
Fourier analysis on finite abelian groups, representation theory and
Fourier analysis of finite groups, finite Gelfand pairs and their spher-
ical functions, and representation theory of the symmetric group. We
also present a detailed account of the (distance-regular) graph theoretic
approach to spherical functions and on the use of finite posets.

All this said, one can use this monograph as a textbook for at least
three different courses on:

(i) Finite Markov chains (an elementary introduction oriented to
the cutoff phenomenon): Chapters 1 and 2, parts of Chapters 5
and 6, and Appendix 1 (the discrete trigonometric transforms).

(ii) Finite Gelfand pairs (and applications to probability): Chap-
ters 1-8 (if applications to probability are not included, then one
may omit Chapters 1 and 2 and parts of the other chapters).

(iii) Representation theory of finite groups (possibly with appli-
cations to probability): Chapters 3, 4 (partially), 9, 10 and 11.

This book would never have been written without the encouragement
and suggestions of Persi Diaconis. We thank him with deepest gratitude.

We are also grateful to Alessandro Figa Talamanca who first intro-
duced us to Gelfand pairs and to the work of Diaconis.

We express our gratitude to Philippe Bougerol, Philippe Delsarte,
Charles Dunkl, Adriano Garsia, Rostislav I. Grigorchuk, Gerard Letac,



Preface xiii

Arun Ram, Jan Saxl and Wolfgang Woess for their interest in our work
and their encouragement.

We also acknowledge, with warmest thanks, the most precious careful
reading of some parts of the book by Reza Bourquin and Pierre de
la Harpe who pointed out several inaccuracies and suggested several
changes and improvements on our expositions.

We finally express our deep gratitude to David Tranah, Peter
Thompson, Bethan Jones and Mike Nugent from Cambridge University
Press for their constant and kindest help at all the stages of the editing
process.

Roma, 14 February 2007 TCS, FS and FT
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Part 1

Preliminaries, Examples and Motivations






1

Finite Markov chains

1.1 Preliminaries and notation

Let X be a finite set and denote by L(X) = {f : X — C} the vector
space of all complex-valued functions defined on X. Clearly dimL(X) =
|X|, where | - | denotes cardinality.

For x € X we denote by ¢, the Dirac function centered at z, that is

1 ify==
53:(y) = . Y
0 ify#ax.

The set {0, : € X} is a natural basis for L(X) and if f € L(X) then

f=Y0ex [(@)
The space L(X) is endowed with the scalar product defined by setting

(fr,f2) = > _ filx)

zeX

for f1, fo € L(X), and we set [|f||? = (f, f). Note that the basis {4, :
x € X} is orthonormal with respect to (-,-). Sometimes we shall write
(-,-)L(x) to emphasize the space where the scalar product is defined if
other spaces are also considered.

If Y C X, the symbol 1y denotes the characteristic function of Y:

o o L HEeY
xTr) =
Y 0 fzdY:

in particular, if Y = X we write 1 instead of 1.

For Y1,Ys,...,Y,, € X we write X =Y, [[Y2]]--]] Y to indicate
that the Y;’s constitute a partition of X, that is X = YUY, U---UY,,
and Y; NY; = 0 whenever ¢ # j. In other words the symbol [] denotes
a disjoint union. In particular, if we write Y [[ Y’ we implicitly assume
that Y NY’ = 0.



4 Finite Markov chains

If A: L(X) — L(X) is a linear operator, setting a(z,y) = [Ady](z
for all z,y € X, we have that

[Afl(@) = D a(z,y)f(y) (1.1)

yeX

for all f € L(X) and we say that the matriz a = (a(z,y)), ,ex, tndeved
by X, represents the operator A.

If the linear operators A;, A2 : L(X) — L(X) are represented by
the matrices a; and ao, respectively, then the composition A; o As is
represented by the corresponding product of matrices a = a; - as that is

a(z,y) = Z a1(z, z)as(z,y).

zeX

For k € N we denote by a* = (a¥)(z,y)) Jex the product of k copies
of a, namely

a®(z,y) = > a*D(z,2)a(z,y).
zeX

We remark that (1.1) can be also interpreted as the product of the
matrix a with the column vector f = (f(z))zex-

Given a matrix a and a column or, respectively, a row vector f, we
denote by a” and by f7 the transposed matrix (i.e. a”(z,y) = a(y,z)
for all z,y € X) and the row, respectively column transposed vector.
This way we also denote by f7 A the function given by

T A) = Y f(@)alz,y). (1.2)
zeX
With our notation, the identity operator is represented by the identity
matrix which may be expressed as I = (6:(y)), yex- If X is a set of
cardinality |X| = n and k < n, then a k-subset of X is a subset A C X
such that |A| = k.
If v1,v2,..., vy are vectors in a vector space V, then (vq,ve,...,0m)
will denote their linear span.

1.2 Four basic examples

This section is an informal description of four examples of finite diffu-
sion processes. Their common feature is that their structure is rich in
symmetries so that one can treat them by methods and techniques from
finite harmonic analysis.



