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Preface

International Journal of Structural Stability (IJSSD) has been in existence since 2001.
The aim of the journal is to provide a unique forum for the publication and rapid
dissemination of original research on stability and dynamics of structures. In support of
the journal, conferences and symposia have been organised regularly. The first
International Conference on Structural Stability and Dynamics (ICSSD) was held in
Taipei in 2000, and it was followed by conferences in Singapore (2002), Orlando, USA
(2005) and Jaipur, India (2012). A smaller IJSSD Symposium, that piggy back on the
International Conference on Advances in Steel Structures (ICASS), was organised in
Hong Kong in 2009. The IJSSD Chief Editors are very grateful to Prof. G.P. Shu (of
Southeast University) and Prof. S.L. Chan (of Hong Kong Polytechnic University) for
inviting us to continue in this very successful synergetic emBedding of the IJSSD
symposium in ICASS. This time round, we have 24 papers for presentation at the IJSSD
Symposium 2012 to be held in conjunction with the 7th ICASS in Nanjing, China.

This IJSSD Symposium Proceedings consists of 24 papers which cover a broad range of
topics such as structural stability and dynamics of thin-walled structural members,
elasticas, functionally graded beams and plates, composite structures, spherical shells,
bridges, floating structures, carbon nanotubes, graphene sheets and numerical techniques
for dynamic analyses.

We hope that the research findings described in this volume of proceedings will inspire
researchers, engineers and designers to conceptualize and build even more awesome
structures for the betterment of mankind.

C.M. Wang, Y.B. Yang and J. N. Reddy
Editors of 1JSSD Symposium Proceedings
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ABSTRACT

In this paper an overview of general third-order beam and plate theories that account for (a) geometric
nonlinearity, (b) microstructure-dependent size effects, and (c) two-constituent material variation
through the thickness (i.e., functionally graded material beams and plates) is presented. A detailed
derivation of the equations of motion, using Hamilton’s principle, is presented, and it is based on a
modified couple stress theory, power-law variation of the material through the thickness, and the von
Karman nonlinear strains. The modified couple stress theory includes a material length scale parameter
that can capture the size effect in a functionally graded material. The governing equations of motion
derived herein for a general third-order theory with geometric nonlinearity, microstructure dependent
size effect, and material gradation through the thickness are specialized to classical and shear deformation
beam and piate theories available in the literature. The theory presented herein also can be used to
develop finite element models and determine the effect of the geometric nonlinearity, microstructure-
dependent size effects, and material grading through the thickness on bending and post-buckling response
of elastic beams and plates.

INTRODUCTION

The next generation of material systems used in space and other structures as well as in MEMS and NEMS
feature thermo-mechanical coupling, functionality, intelligence, and miniaturization. These systems
may operate under varying conditions. When functionally graded material systems are used in nano- and
micro-devices, it is necessary to account for the microstructure-dependent size effect and the geometric
nonlinearity. Since beam and plate structural elements are commonly used in these devices and structures,
it is useful to develop refined theories of plates that account for size effects, material gradation through
thickness, and geometric nonlinearity.

In the context of plate theories, no plate theory exists that accounts for shear deformation while not
requiring shear correction factors, material variation through plate thickness, includes microstructure-
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dependent size effects, and geometric nonlinearity. This very fact motivated the present study. The
objective of the current paper is to develop a general third-order plate theory that accounts for through-
thickness power-law variation of a two-constituent material with temperature-dependent material
properties, modified couple stress theory, and the von Karman nonlinear strains. In particular, we
extend the modified couple stress theory of Yang et al. ' (also see **) to the case of functionally graded
plates using the third-order plate kinematics of Reddy "™, and Bose and Reddy "?'. Since most
nanoscale devices involve plate-like elements that may be functionally graded and undergo moderately
large rotations, the newly developed plate theory can be used to capture the size effects in functionally
graded microplates. Moreover, the bending-extensional coupling is captured through the von Karman
nonlinear strains.

MODIFIED COUPLE STRESS MODEL

The couple stress theory proposed by Yang et al. ™) is a modification of the classical couple stress theory.
They established that the couple stress tensor is symmeti'ic and the symmetric curvature tensor is the only
proper conjugate strain measure to have a contribution to the total strain energy‘of the body. The two
main advantages of the modified couple stress theory over the classical couple stress theory are the
inclusion of a symmetric couple stress tensor and the involvement of only one length scale parameter,
which is a direct consequence of the fact that the strain energy density function depends only on the strain
and the symmetric part of the curvature tensor (see Ma, Gao, and Reddy ** and Reddy */). According
to the modified couple stress theory, the virtual strain energy éU can be written as

8U=I8e:a+67{:de=Jae.,:u., ‘*‘5%‘/:7'11,'(“/ (D
4 v

where summation on repeated indices is implied; here s; denotes the cartesian components of (the
symmetric part of) the stress tensor, e; are the strain components, m; are the components of the
deviatoric part of the symmetric couple stress tensor, and X; are the components of the symmetric
curvature tensor

o1 (9w e\ 1 du
Xi =73 (ax,JraI,) 2 “* 3, @

FUNCTIONALLY GRADED MATERIALS

Consider a plate of total thickness 2. The x and y coordinates are taken in the midplane, denoted with
2, and the z-axis is taken normal to the plate, as shown in Figure 1. We assume that the material of the
plate is isotropic but varies from one kind of material on one side, z= — h/2, to another material on the
other side, z= h/2, as indicated in Figure 2. A typical material property P of the FGM through the plate
thickness is assumed to be represented by a power-law (see Praveen and Reddy %))

Lpz) 3)

P(z, T) = [P.AT) —Pa(D]f(2) +Pu(D), f(2) = (7 h

where P.(T) and P, (T) are the values of a typical material property P, such as the modulus, density,
and conductivity, of the ceramic material and metal, respectively; n denotes the volume fraction
exponent, called power-law index. When n = 0, we obtain the single-material plate [ with the property
PA(TY].

2
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Figure 1 Geometry of a plate loaded with forces,

100% Material 1

FGM

/

Figure 2 Through-thickness functionally graded plate.

100% Matenal 2

When FGMs are used in high-temperature environment, the material properties are functions of
temperature, and they can be expressed as

“PAD) =c(ca T '+14+aT+aT+aT),a=corm 4)

where ¢, is a constant appearing in the cubic fit of the material property with temperature; and c¢-1, ¢,
¢z, and c3 coefficients obtained after factoring out ¢, from the cubic curve fit of the property. For the
analysis with constant properties, the material properties were all evaluated at 25.15C.

A GENERAL THIRD-ORDER THEORY

Here develop a general third-order theory for the deformation of the plate first and then specialize to the
well-known plate theories. We restrict the formulation to linear elastic material behavior, small strains,
and moderate rotations and displacements, so that there is no geometric update of the domain, that is,
the integrals posed on the deformed configuration are evaluated using the undeformed domain and there is

no difference.between the Cauchy stress tensor and the second Piola—Kirchhoff stress tensor.

The equations of motion are obtained using Hamilton’s principle. The three-dimensional problem is
reduced to two-dimensional one by assuming a displacement field that is explicit in the thickness
coordinate z. We begin with the following displacement field
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wlz, y, 2z, 1) = ulz, y, t) + 2. +22¢,. +22¢y
uz(l‘. Vs 2y t)='U(I' N t)+£y+22¢y+23¢l}y (5)
u; (x5 3y 2y 1) = wlx, y, t) + 2. + 229,
where (u, v, w) are the displacements along the coordinate lines of a material point on the xy-plane, i.
e.» ulx, ys ) =u (x, Ve 0, t), vix, Vs t)=u,(x, b & 0, ), wix, v, t)=us(x, Vs 0, ) and

0= (52) . 0= (52). 0= (52) .,

_ (P _ (P _ Pu ‘

2. = (322 ),=0’ 2%, = (E)zz ),=o’ 2. = zt "’ (6)
_ Pu —Pu

b = a8’ 6y = az’

The reason for expanding the inplane displacements up to the cubic term and the transverse displacement
up to the quadratic term in z is to obtain a quadratic variation of the transverse shear strains ¥. = 2e.
and 7, = 2¢,, through the plate thickness. Note that all three displacements contribute to the quadratic
variation. In the most general case represented by the displacement field in Eqqn. (5), there are 11
generalized displacements (u, v, ws 0cs 0y, 0.5 . ¢y $.4 ¢y &) and, therefore, 11 differential
equations will be required to determine them.

The von Karman nonlinear strain-displacement relations associated with the displacement field in Eqn.
(17) can be obtained by assuming that the strains are small and rotations are moderately large; that is, we
assume

(52) ~o0 (35) ~o (32) ~ G2
(3) ~ G (5)(53)~% %

for @ =1, 2. Thus the nonzero strains of the general third-order theory with the von Karman nonlinearity

N

are
- 2 2 2 Ci
&y = e“”}#z{ D 22 e§,f’ 221 ed (8
Yy
Ex E;g') (l) eg)
e (0) €(2) {
{712 }‘rz{ }‘rzz A €D
y_yz ),(0) }[l) -é)
with
duy 1 (dw) 0,
0 91+ 2 (31 W dx
dw\? d
b g_;jL% (52) (i = 5"; 10)
0) 1
=) o, v awaw| 7 a6, o8,
dy dx dx dy dy dx
%, N
& o & g
o 24,
2 \_— o 1] 3 \_
&y = 3 y R &y = 3 (1)
2) } y 3) Y
R TN R ETRNE T
dy dx dy dx
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o 2 o $. N 0
52)}: R Ez" _Jme gt 6?3»}: et 52 12
= e+ =T |war R % 3¢y+%—";

In view of the displacement field in Eq. (5), components of the rotation vector and curvature tensor take

the form (with w) = wys w2 = wys w3 =w:s Y11= Xxw» X22= Xy + and so on)

1 d 0. Jé.
W = —[(%U‘an—y‘Fzz %)— (0y+22¢y+3zz¢y)j|=w§°)+2zu§” + 22 w®

Pl ot o+ 3ego— (24T 42 ) | o b + g

“TZ a3)
_A[(v, 30 20 s\ (du 0. b ,
@We 2[(91+zar+zz 31+Z 91) (ay+zay+zz 8y+z ay)
=" + 2w’ + 20 + 20
where »
() 1 (dw a 1 (90: @ _ 1 996:_ o _ 1 _dw
10 2(33’ 0))""4' 2<3y 2¢y)’ (O 2(3_‘y 3‘/’y)9wy - 2(0I 31-)
(1)_i __(7& (2) i 9¢2 (0) _l a_'l)___a_u (1) _i a_el_a_a-l‘
= 2(2¢’ ax>’ ¥ 2(3‘/" ar)’“" N 2( x ay) . z(ax ay)(“’)
(2) i(a_ﬁ %), (3>—i(%—%)
2 \dx Jdy : 2\dx Jdy
and
Xeo = Xo# 42X + 2P @
v = X0+ 2y (15)
X= = X= + A= + 24P
X =X + A + 2P
Xow = X2 A= 2y | 3o
- K =X R AP g2y
with .
o _ 1 9 (dw_ @ _ 1 3 (390, @ _ 1 9 (9%
X= Zax(ry Gy),)( 291(331 2¢y).X 291(9y 3¢’)
o _ 1 3 _dw m 1 9 6. @ 1 9 ag,
¥ =7 ay("' Se)s 1Y = ay(2¢’ 72 ) 1 = ay(3¢‘ 7e)
o _ 130, 0.\ ,» _ (3% b\ o _ 3 (3
x _2(31 ay)’x (3.1' ay)’x _2(31 ay) K162
o _ 1[ 3 (dw__ a Jw w _ 1[ 3 (36 a 0.
X Z[ay(ay 6’)+91(0I BI)J'XJ}' Z[Sy(ay 2¢y>+31(2¢1 31)]
@ _ 179 (9 9 _9%.  _ 1[0 9 (v __ du
5 Z[Jy(ay 3¢y)+ax(3‘/” 81)i|'xn o 2[(33; 2¢y)+31( x ay):|
@ _ (e g\ L (20, 3\ o _ 10 2%\ o _ 12 (%
% —<ay 3 )+ 5 52 (52 y)’x =Sl ay>’x = g ay)
© _ 1 (g5 6.\, 2 (dv_2u\| o _ (o 3\, 1 3 (36, 26
X = (2751 31)+9y(9 ay)]”‘" _(35‘” ax)+zay(3§ 3y)
@ _ 10 (% b\ o _ 109 2
xﬂ_zay(ax ay)'x _ZHy(E)x ay)

an
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The equations of motion are obtained by using the principle of virtual displacements or Hamilton’s
principle (see Reddy ™)

T
jo (0K — U —sV)dt = 0 18)

where 8K is the virtual kinetic energy, oU is the virtual strain energy, and 8V is the virtual work done by
external forces.

The details of deriving the expressions for the virtual energies are not given here due to the space
restrictions (see Reddy and Kim "'*!). The equations of motion are

IMP L IMP | 1 3 (aMD | MY oy la® _ o 5 5
"o Ty T2 ay( Iz +_3;_)+F(‘ gy FT R e

MO | IMD 3 (MO | IMD 9 M= ; s
i e A T =g (e T JHEY — 3 G = et ml, b+ mag,

3 (dwy r0) | IWp 10 3 (w4 IWp g0 ) IMD | IMP
Ao, 81'(:711\4zz +3yM" )+ay(31M” +3yM” )+ dx + dy

=

_ii aM(Jg) aM(O) i (_7 aMO) aM(O) o) i ac(O) —ac_‘(tﬁ)

23y( 9r 1 dy )+zax( 3y | oz )+F‘ +2(_a§7 ay)
:”lo'l:£1+mléz+7nz$:

ML MY o 1 (MY MY MOy 1 3 (aML | aMY

. : 31+3y M”+2(az+ay ay)+23y(31+3y)

1 ac?

o> 3y = m1ﬁ+mzé:+m3¥x+m~u}lx

+FO + e +

IMY - IMY a1 (M | MY OMP N\ 1 9 (M | aMY
‘””ax“Lay Mz 2(31+3y 31)231(31+ay)

i 1 o 1 ‘acﬁl) e 9 é J
+ F¢ _—Z—C" e = m v+ mly, +msp, +mi,

aM® | aM2® D aMyY | oMy ML o 1 3 (aM? | aMP
O dx + dy 2M= +( dx + dy dy My )+2 ay( dx * dy )

2 . - .
FFP 46 - 20 = ik s+ b+ s

2) 2) 19 D 1 2) 2)
b, - %.4.%_2]\4;)_(%_4_%__3“@ _M;;n)_%%(aMx +Mx_)

dx dy dx dy dx dx dy
+F‘Z’—c"’—i£=mi)+mé + by +ms
¥ T 2 9x 2 3Uy 4Ty 5¢)’
IMD | MDD g o 3 (M MY M2 o0y, 1 9 (IMEY | OMY
& dx Al dy M2 + 2( dx + dy dy Mz )+ 2 ay( dx + dy )
+F‘3’+—3—c‘2’+iac—$)=mﬁ+ é+ é. + y
T 2 y 2 ay 3 maUx ms P mﬁ‘,b.r

MY | aMY 3 (aM? | IM®  aMP 1 9 (aM® | aMP
g — 2) (e S {0 Ry e e DY s @ 2 e o
&y dx + dy M 2 ( dx dy dx 2M: ) 2 31‘( dx + dy )

1 acga)

% 2r Insi5+nué,+ms$, +me<'/’&

_|_F§3) _‘iC(Z) =
2 x

M | IMY a1 3 (M M\ 1 9 (MY | IMY N\, 1 (IMY  IMY
:3x+ay Mz 23y(31+ay)+231(3y+31')+2(3y 31)
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a(l) 7;1) oe - ..
—f—Fi”+%(%——gy—)=ln1w+m20,+rn3¢:
M2 M2 1 3 (M2  aMP\, 1 a2 (AMD L aM2\, IMP MY
e Tr dy M 2 3y< B dy ) 2 31( dy +5oz )+ dy ax
. I c® & i .
+F§‘)+%(—3}—'—5—y)=mzw+mgﬁz+m4¢: (19)

where the superposed dot on a variable indicates time derivative, for example, v =du/dt, m;(i=0, 1,
2, ==, 6) are the mass moments of inertia

h

m; = J;p(zrdz (20)

M}’ are the stress resultants

h

h
2

MP =f (g, dz, MP =f‘ (D)*mydz, (k=0,1, 2, 3) @D

’i _h
and (f = f 335 f .) are the body forces (measured per unit volume), (t,, t,, t.) the surface forces
(measured per unit area) on S, and (g}, g}, q}) the distributed forces (measured per unit area) on Q" ,
(g%, qb, q%) the distributed forces (measured per unit area) on Q , and (c,,c,,c.) be the body
couples (measured per unit volume) in the (x, y, z) coordinate directions.” Additional details can be
found in [15].

The general third-order theory developed herein contains all of the existing plate theories but some of
them have not been extended to contain the microstructure parameters and the vonKarman nonlinearity.
They are summarized in the recent paper by Reddy and Kim "%,

CONCLUSIONS

A general third-order theory of functionally graded plates with microstructure-dependent length scale
parameter and the von-Karman nonlinearity is presented. The theory accounts for temperature dependent
properties of the constituents in the functionally graded material, and modified couple stress theory is
used to bring a microstructural length scale parameter. The equations of motions and associated force
boundary conditions are derived using Hamilton’s principle. The theory developed contains 11 generalized
displacements. The existing plate theories, namely, a third-order theory with vanishing surface tractions,
the Reddy third-order plate theory 7!, the first-order plate theory, and the classical plate theory can be
obtained as special cases of the developed general third-order plate theory. Three-dimensional constitutive
relations must be used, consistent with the three-dimensional strain field, to develop plate constitutive

relations. More complete development is given in the forthcoming paper [%.

The general third-order theory and its special cases developed herein can be used to construct finite
element models of functionally graded plates with geometric nonlinearity and microstructure dependent
length scale parameter. For the general case, the finite element models allow C°-approximation of all 11
generalized displacements. The third-order plate theories with vanishing surface tractions require C°
interpolation of (u, v, 6., ,) and Hermite interpolation of w, ¢,, and ¢,. Computational models and
their applications of some of the theories presented here are yet to appear. Also, analytical (e. g.,
Navier) solutions based on the linear theories may be obtained.
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ABSTRACT

This paper is focused on the lateral-torsional buckling of cracked or weakened elastic beams. The crack is
modelled with a generalized elastic connection law, whose equivalent stiffness parameters can be derived
from fracture mechanics considerations. The same type of generalised spring model can be used for beams
with semi-rigid connections, typically in the field of steel or timber engineering. As the basis for the
present investigation, we consider a strip beam with fork end supports and exhibiting a single vertical
edge crack, subjected to uniform bending in the plane of greatest flexural rigidity. The effect of
prebuckling deformation is taken into consideration within the framework of the Kirchhoff-Clebsch
theory. First, the three-dimensional elastic connection law adopted is a direct extension of the planar
case, but this leads to a paradoxical conclusion: the critical moment is not affected by the presence of the
crack, regardless of its location. It is shown that the above paradox is due to the non-conservative nature
of the connection model adopted. Simple alternatives to this cracked-section constitutive law are
proposed, based on conservative moment-rotation laws ( quasi-tangential and semi-tangential) and
consistent variational arguments.
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INTRODUCTION

The numerous investigations devoted to the buckling of cracked elastic structures have so far focused
mainly on the flexural buckling behaviour of columns -e. g., [1, 2]. For such an in-plane analysis, the
crack may be reasonably modelled by a simple elastic rotational spring with an “equivalent stiffness”, as
suggested by Okamura et al. ™. The fundamental constitutive law of the cracked cross-section is

therefore expressed as
M= kA, (@Y

where M is the bending moment acting at the cracked section, k is the equivalent stiffness and Af is the
relative rotation (slope difference) occurring at the cracked cross-section.

In order to tackle out-of-plane buckling problems (e. g., the lateral-torsional buckling of beams— see
Figure 1), it is necessary to generalise the above constitutive law. The most straightforward

generalisation corresponds to the diagonal relation

M, k0 0) (A6
M |=1[0 k 0|28/, (2
M, 0 0 ki) oG

where M, is the torsional moment, M; is the out-of-plane (minor-axis) bending moment, Mj3 is the in-
plane (major-axis) bending moment, the Ag; (i =1, 2, 3) are the relative rotations, associated with each
direction, occurring at the cracked cross-section and each k; is the stiffness relating a relative rotation
with the corresponding moment. The cracked cross-section constitutive law can be further generalised by
considering off-diagonal (coupling) terms, making it possible to take into account the effects of
anisotropy and crack orieﬂtation—see, for instance, Wang et al. ! who address the closely related

problem of beam vibration.

The amount of work dealing with the lateral-torsional buckling of cracked beams is rather scarce. Carloni
et al. ™ investigated the lateral-torsional buckling of cracked I-beams under uniform bending, but

restricted the constitutive law to the torsional term, i.e.,

M, = ki AG. 3

Karaagac et al. ™ studied the lateral-torsional buckling of a cracked cantilever beam submitted to a
concentrated force, adopting Eq. (2) to describe the cracked cross-section constitutive behaviour—the
buckling problem was solved by means of the finite element method. Finally, the authors are not aware
of the publication of any closed-form solution concerning the lateral-torsional buckling behaviour of
cracked beams.

The same type of spring model can be used for beams with semi-rigid connections. In the field of steel
structures, the effect of semi-rigid connections on the out-of-plane behaviour of I-beams has been
numerically assessed by several authors, such as Krenk and Damkilde ! or more recently Basaglia
etal. . In order to include the effects of the warping restraint, the constitutive law (2) may be
augmented to
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