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Preface

There is an ever-increasing demand for the development of energy-conversion
systems towards improved thermodynamic efficiency and ecological compatibility.
Advanced design concepts are based on higher service temperatures, lower weight,
and higher operational speeds. For example, the operating efficiency of a gas-
turbine engine will increase by over 1% for every 10°C increase in the turbine-inlet
temperature. Substantial fuel savings in aircraft and power generation can be
achieved through the introduction of new materials that can provide higher tem-
peratures or reduced component weight. The conventional metallic systems that
are currently in use have been developed over the last 50 years to near the limits
of their capability. If further advances are to be made, new classes of materials
will be required.

Titanium aluminide alloys based on the intermetallic gamma phase are widely
recognized as having the potential to meet the design requirements mentioned
above. Undoubtedly, the development of such a material system has important
implications for spin-offs to other high-temperature technologies, as well as for
the general economy. For example, General Electric has recently made public that
its most recent engine, the GEnx, includes the use of titanium aluminide as a
blade material. This is a significant milestone for a relatively new, advanced engi-
neering material.

Although there is a vast body of TiAl literature going back over 20 years, there
have only been a few review articles published in the recent past, the latest nearly
a decade ago. Since that time, considerable advances have been made, both in the
basic understanding of the physical metallurgy and in processing technology. It
is our intention that the publication of this book will, for the first time, give a
wide-ranging interpretation and discussion of the voluminous amounts of data
documented in the literature. For TiAl to be successfully employed as a structural
material requires a comprehensive understanding of the complex microstructures,
down to the nanometer scale, and knowledge concerning how the structure—
property relationships are determined by, for example, the atomic details of inter-
face-related phenomena.

The overview of all relevant research topics that are presented in this book is
intended to form a link between scientific findings and alloy development, mate-
rial properties, industrial processing technologies, and engineering applications.
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Preface

The metallurgy of TiAl alloys undoubtedly has several features in common with
other intermetallic system. Thus, in that we have chosen to emphasize the scien-
tific principles, the book will provide a treatment of the subject for researchers and
advanced students who need a more detailed coverage than is found in physical
metallurgy textbooks. We expect that our compilation of the current state of tita-
nium aluminide science and technology will not only serve as a guide through
the huge body of literature to the TiAl community, but will also be of interest to
materials scientists, engineers, and technical managers who are involved in areas
where low-density, high-temperature resistant materials are required. The detailed
description of interfaces and interface related phenomena will certainly be of inter-
est to an extended scientific community.

It would not have been possible to write such a book without the help and
support from numerous people and organizations. First, we would like to acknowl-
edge the generous support and the excellent research conditions provided by the
Helmbholtz-Zentrum Geesthacht (formerly GKSS) under its Scientific Director
Prof. Wolfgang Kaysser, Prof. Andreas Schreyer as the Director of the Institute
for Materials Research, and Prof. Florian Pyczak as group leader.

We also thank the BMBF (German Ministry for Education and Research), DFG
(German Science Foundation), Helmholtz Gemeinschaft (Helmholtz Associa-
tion), Rolls-Royce Deutschland, and CBMM (Companbhia Brasileira de Metalurgia
e Mineragao) for financial support through their funding of numerous research
projects.

We would particularly like to thank Prof. Richard Wagner (now Director at the
Institute Laue-Langevin, Grenoble, France) who initiated the work on TiAl in the
late 1980s while he was director of our institute. Additionally, we would like to
thank our colleagues and former students, Ulrich Brossmann, Stefan Eggert, Dirk
Herrmann, Roland Hoppe, Ulrich Frobel, Viola Kiistner, Uwe Lorenz, the late
Johann Miillauer, Thorsten Pfullmann, and UIf Sparka for their interest, support,
and for contributing to an excellent group atmosphere. The generous help from
the HZG library personnel is also acknowledged.

A very special mention must be made to acknowledge Dr. Young-Won Kim
(Universal Energy Systems, Dayton, USA) for his achievement in keeping the
titanium aluminide community together for very many years and his friendship.
Fritz Appel would like to thank his wife, Barbel, for her support. Finally, the
authors would like to expresss their gratitude to Wiley-VCH for the opportunity
to write the book and in particular gratefully acknowledge the patient support by
Waltraud Wiist and Ulrike Werner and careful copyediting of Bernadette Cabo.

Geesthacht, January 2011 Fritz Appel
Jonathan David Heaton Paul
Michael Oehring
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1
Introduction

The reason why gamma TiAl has continued to attract so much attention from
the research community including universities, publicly funded bodies, indus-
trial manufactures, and end-product users is that it has a unique combination of
mechanical properties when evaluated on a density-corrected basis. In particular,
the elevated temperature properties of some alloys can be superior to those of
superalloys.

Dimiduk [1] has assessed gamma TiAl with other aerospace structural materials
and shown that new capabilities become available on account of its properties. The
most important pay-offs involve

¢ high melting point;

» low density;

 high specific strengths and moduli;

* low diffusivity;

» good structural stability;

e good resistance against oxidation and corrosion;

¢ high ignition resistance (when compared with conventional titanium alloys).

Figure 1.1 shows how the specific modulus and specific strength of gamma TiAl
alloys compare to other materials. As a result of these properties TiAl alloys could
ultimately find use in a wide range of components in the automotive, aero-engine
and power-plant turbine industries.

For a material to be ready for introduction, the whole production chain and
supplier base, from material manufacture through processing and heat treatment
must have achieved “readiness”. This includes detailed knowledge of how compo-
nent properties are related to alloy chemistry, microstructure, and processing
technology. In addition, TiAl-specific component design and lifing methodologies
need to be developed and give reliable predictions [2]. At the implementation stage
no unforeseen technical problems concerning the processing route or component
behavior, which may be very costly to remedy, should arise. In 1999, a time when
fuel costs were relatively low compared to the current day, Austin [3] discussed
how introduction of gamma would depend on economic viability. This was identi-
fied as the chief obstacle for the use of gamma, with marketplace factors dominat-
ing implementation decisions.

Gamma Titanium Aluminide Alloys: Science and Technology, First Edition. Fritz Appel, Jonathan David
Heaton Paul, Michael Oehring.
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Graphs showing the (a) specific compares favorably with the other materials.
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other structural materials, as a function of original diagrams.

temperature [1]. The data indicates that TiAl

Due to its intermetallic nature, the complex constitution and microstructure,
and the inherent brittleness, the physical metallurgy of TiAl alloys is very demand-
ing. Nevertheless, we will attempt to discuss the broad literature that has been
published over the last two decades concerning synthesis, processing and charac-
terization. In our opinion, significant advances have been made, in particular
General Electric has made public its intention [4, 5] to use gamma TiAl in its latest
engine, the GEnx-1B (Figure 1.2), which best illustrates the present state that has
been achieved in TiAl technology. Gamma TiAl has also been successfully intro-
duced into at least one automotive series production, used in formula 1 racing
engines, and a variety of components have been manufactured and successfully
tested. In the following chapters we will present a comprehensive assessment of
both the science and the related technology that has enabled TiAl to be used in
the real world.



