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PREFACE

Today is the most exciting time to be working in nanotechnology, and bio-
nanotechnology in particular. Chemistry, biology, and physics have re-
vealed an immense amount of information on molecular structure and
function, and now we are poised to make use of it for atomic-level engineer-
ing. New discoveries are being made every day, and clever people are
pressing these discoveries into service in every imaginable (and unimagin-
able) way.

In this book, I present many of the lessons that may be learned from bi-
ology and how they are being applied to nanotechnology. The book is di-
vided into three basic parts. In the first part, I explore the properties of the
nanomachines that are available in cells. In Chapter 2, I present the unfamil-
iar world of bionanomachines and go on a short tour of the natural nanoma-
chinery that is available for our use. Chapter 3 provides an overview of the
techniques that are available in biotechnology for harnessing and modify-
ing these nanomachines.

In the second part, Ilook to these natural nanomachines for guidance in
the building of our own nanomachinery. By surveying what is known about
biological molecules, we can isolate the general principles of structure and
function that are used to construct functional nanomachines. These include
general structural principles, presented in Chapter 4, and functional princi-
ples, described in Chapter 5.

The book finishes with two chapters on applications. Chapter 6 surveys
some of the exciting applications of bionanotechnology that are currently
under study. The final chapter looks to the future, speculating about what
we might expect.

Bionanotechnology is a rapidly evolving field, which encompasses a di-
verse collection of disciplines. This book necessarily omits entire sectors of

research and interest and is unavoidably biased by my own interests and
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my own background as a structural biologist. Biomolecular science still
holds many deep mysteries and exciting avenues for study, which should
provide even more source material for bionanotechnology in the coming
decades. I invite you to explore the growing literature in this field, using
this book as an invitation for further reading.

I thank Arthur J. Olson for many useful discussions during the writing
of this book.

DAviD S. GOODSELL
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THE QUEST FOR
NANOTECHNOLOGY

The principles of physics, as far as I can see, do not speak
against the possibility of maneuvering things atom by
atom. It is not an attempt to violate any laws; it is
something, in principle, that can be done; but in practice, it
has not been done because we are too big.

—Richard Feynman*

Nanotechnology is available, today, to anyone with a laboratory and imagi-
nation. You can create custom nanomachines with commercially available
kits and reagents. You can design and build nanoscale assemblers that syn-
thesize interesting molecules. You can construct tiny machines that seek out
cancer cells and kill them. You can build molecule-size sensors for detecting
light, acidity, or trace amounts of poisonous metals. Nanotechnology is a re-
ality today, and nanotechnology is accessible with remarkably modest re-
sources.

What is nanotechnology? Nanotechnology is the ability to build and
shape matter one atom at a time. The idea of nanotechnology was first pre-
sented by physicist Richard Feynman. In a lecture entitled “Room at the
Bottom,” he unveiled the possibilities available in the molecular world. Be-
cause ordinary matter is built of so many atoms, he showed that there is a

*All opening quotes are taken from Richard P. Feynman'’s 1959 talk at the California Institute of
Technology, as published in the February 1960 issue of CalTech’s Engineering and Science.
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The Quest for Nanotechnology

remarkable amount of space within which to build. Feynman’s vision
spawned the discipline of nanotechnology, and we are now amassing the
tools to make his dream a reality.

But atoms are almost unbelievably small; a million times smaller than
objects in our familiar world. Their properties are utterly foreign, so our
natural intuition and knowledge of the meter-scale world is useless at best
and misleading at worst. How can we approach the problem of engineering
at the atomic scale?

When men and women first restructured matter to fit their needs, an
approach opposite from nanotechnology was taken. Instead of building an
object from the bottom up, atom-by-atom, early craftsmen invented a top-
down approach. They used tools to shape and transform existing matter.
Clay, plant fibers, and metals were shaped, pounded, and carved into ves-
sels, clothing, and weapons. With some added sophistication, this approach
still accounts for the bulk of all products created by mankind. We still take
raw materials from the earth and physically shape them into functional
products.

Mankind did not make any concerted effort to shape the atoms in man-
ufactured products until medieval times, when alchemists sowed the seeds
of the modern science of chemistry. During their search for the secrets of
immortality and the transmutation of lead to gold, they developed methods
for the willful combination of atoms. Chemical reaction, purification, and
characterization are all tools of the alchemists. Today, chemists build mole-
cules of defined shape and specified properties. Chemical reactions are un-
derstood, and tailored, at the atomic level. Most of chemistry, however, is
performed at a bulk level. Large quantities of pure materials are mixed and
reacted, and the desired product is purified from the mixture of molecules
that are formed. Nonetheless, chemistry is nanotechnology—the willful
combination of atoms to form a desired molecule. But it is nanotechnology
on a bulk scale, controlled by statistical mechanics rather than controlled
atom-by-atom at the nanometer scale.

We are now in the midst of the second major revolution of nanotechnol-
ogy. Now, scientists are attempting modify matter one atom at a time.

Some envision a nanotechnology closely modeled after our own macro-
scopic technology. This new field has been dubbed molecular nanotechnology



Biotechnology and the Two-Week Revolution

for its focus on creating molecules individually atom-by-atom. K. Eric
Drexler has proposed methods of constructing molecules by forcibly press-
ing atoms together into the desired molecular shapes, in a process dubbed
“mechanosynthesis” for its parallels with macroscopic machinery and engi-
neering. With simple raw materials, he envisions building objects in an as-
sembly-line manner by directly bonding individual atoms. The idea is com-
pelling. The engineer retains direct control over the synthesis, through a
physical connection between the atomic realm and our macroscopic world.

Central to the idea of mechanosynthesis is the construction of an assem-
bler. This is a nanometer-scale machine that assembles objects atom-by-atom
according to defined instructions. Nanotechnology aficionados have specu-
lated that the creation of just a single working assembler would lead imme-
diately to the “Two-Week Revolution.” They tell us that as soon as a single
assembler is built, all of the dreams of nanotechnology would be realized
within days. Researchers could immediately direct this first assembler to
build additional new assemblers. These assemblers would immediately al-
low construction of large-scale factories, filled with level upon level of as-
semblers for building macroscale objects. Nanotechnology would explode
to fill every need and utterly change our way of life. Unfortunately, assem-
blers based on mechanosynthesis currently remain only an evocative idea.

The subject of this book is another approach to nanotechnology, which
is available today to anyone with a moderately equipped laboratory. This is
bionanotechnology, nanotechnology that looks to nature for its start. Modern
cells build thousands of working nanomachines, which may be harnessed
and modified to perform our own custom nanotechnological tasks. Modern
cells provide us with an elaborate, efficient set of molecular machines that
restructure matter atom-by-atom, exactly to our specifications. And with
the well-tested techniques of biotechnology, we can extend the function of
these machines for our own goals, modifying existing biomolecular
nanomachines or designing entirely new ones.

BIOTECHNOLOGY AND THE TWO-WEEK REVOLUTION

The Two-Week Revolution has already occurred, although it has lasted for
decades instead of weeks. Biotechnology uses the ready-made assemblers
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available in living cells to build thousands of custom-designed molecules to
atomic specifications, including the construction of new assemblers. This
has lead to myriad applications, including commercial production of hor-
mones and drugs, elegant methods for diagnosing and curing infectious
and genetic diseases, and engineering of organisms for specialized tasks
such as bioremediation and disease resistance.

Biotechnology took several decades to gather momentum. The primary
impediment has been the lack of basic knowledge of biomolecular processes
and mechanisms. We have been given an incredible toolbox of molecular
machinery, and we are only now beginning to learn how to use it. The key
enabling technology, recombinant DNA, made the natural protein assem-
bler of the cell available for use. The subsequent years have yielded numer-
ous refinements on the technology, and numerous ideas on how it might be
exploited.

Biotechnology has grown, and is still growing, with each new discovery
in molecular biology. Further research into viral biology has led to im-
proved vectors for delivering new genetic material. An explosion of en-
zymes for clipping, editing, ligating, and copying DNA, as well as efficient
techniques for the chemical synthesis of DNA, has allowed the creation of
complicated new genetic constructs. Engineered bacteria now create large
quantities of natural proteins for medicinal use, mutated proteins for re-
search, hybrid chimeric proteins for specialized applications, and entirely
new proteins, if a researcher is bold enough to design a protein from
scratch.

FROM BIOTECHNOLOGY TO BIONANOTECHNOLOGY

We are now poised to extend biotechnology into bionanotechnology. What
is bionanotechnology, and how is it different from biotechnology? The two
terms currently share an overlapped field of topics. I will define bionan-
otechnology here as applications that require human design and construc-
tion at the nanoscale level and will label projects as biotechnology when
nanoscale understanding and design are not necessary. Biotechnology grew
from the use of natural enzymes to manipulate the genetic code, which was
then used to modify entire organisms. The atomic details were not really
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important—existing functionalities were combined to achieve the end goal.
Today, we have the ability to work at a much finer level with a more de-
tailed level of understanding and control. We have the tools to create bio-
logical machines atom-by-atom according to our own plans. Now, we must
flex our imagination and venture into the unknown.

Bionanotechnology has many different faces, but all share a central con-
cept: the ability to design molecular machinery to atomic specifications. To-
day, individual bionanomachines are being designed and created to per-
form specific nanoscale tasks, such as the targeting of a cancer cell or the
solution of a simple computational task. Many are toy problems, designed
to test our understanding and control of these tiny machines. As bionan-
otechnology matures, we will redesign the biomolecular machinery of the
cell to perform large-scale tasks for human health and technology. Macro-
scopic structures will be built to atomic precision with existing biomolecu-
lar assemblers or by using biological models for assembly. Looking to cells,
we can find atomically precise molecule-sized motors, girders, random-ac-
cess memory, sensors, and a host of other useful mechanisms, all ready to
be harnessed by bionanotechnology. And the technology for designing and
constructing these machines in bulk scale is well worked out and ready for
application today.

Nanomedicine will be the biggest winner. Bionanomachines work best
in the environment of a living cell and so are tailored for medical applica-
tions. Complex molecules that seek out diseased or cancerous cells are al-
ready a reality. Sensors for diagnosing diseased states are under develop-
ment. Replacement therapy, with custom-constructed molecules, is used
today to treat diabetes and growth hormone deficiencies, with many other
applications on the horizon.

Biomaterials are another major application of bionanotechnology. We
already use biomaterials extensively. Look around the room and notice how
much wood is used to build your shelter and furnishing and how much cot-
ton, wool, and other natural fibers are used in your clothing and books. Bio-
materials address our growing ecological sensitivity—biomaterials are
strong but biodegradable. Biomaterials also integrate perfectly with living
tissue, so they are ideal for medical applications.

The production of hybrid machines, part biological and part inorganic,



