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Introduction

The basic description of a mechanical system is in terms of the
coordinates and the momenta of the molecules, or in terms of its
wave function. However such a description when applied to systems
of interest in chemical physics, hydrodynamics or biology leads to
great practical and conceptual difficulties. Even if we could con-
ceive computers big enough to study the molecular dynamics of say
10%% molecules in a macroscopic system, the knowledge of their
positions and. their velocities would be of little interest as we would
never be able to repeat an experiment involving the same initial
state.

The great importance of thermodynamic and hydrodynamic
methods is that they provide us with a ‘reduced description’, a
‘simplified language’ with which to describe macroscopic systems.
In many cases of interest such a reduced description is all that is
needed. For instance, to predict the temperature evolution. of some
piece of metal it is sufficient to solve the Fourier equation with
appropriate initial and boundary conditions. The temperature at
every point is an average taken over a large number of molecules.
The agreement between the predictions of the Fourier equation
and experiment shows that a more detailed study of the evolution
in terms of mechanical quantities is not required. It is not the purpose
of this monograph to analyse the relation between the mechanical
and the macroscopic descriptions. This can only be done with the
help of statistical mechanics of many-body systems. Here we shall
be concerned solely with macroscopic methods.

How far can we proceed with such methods? What is the class of
phenomena which may be investigated ? These are some of the
problems we shall deal with in this book.

It is well known that once the second law is formulated, classical
thermodynamics concentrates essentially on the study of equilibrium
states. Classical thermodynamics concentrates on the properties of
systems which have reached thermodynamic equilibrium (e.g.
Schottky, 1929). It is mainly during the last twenty years that we have
witnessed the rapid growth of thermodynamics of irreversible pro-
cesses. The great importance of this development lies in the fact that
it makes possible the application of macroscopic methods outside
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xii Introduction

equilibrium (for a short history of this subject see I. Prigogine,
1947). However this development was essentially limited to the
near-equilibrium region. In this region, the thermodynamic forces
(such as temperature gradient, chemical affinities,. . .) and the
thermodynamic flows (such as flow of heat, chemical reactions rates,

. .) are linked by linear relations.

The Onsager reciprocity relations (1931) and the Theorem of
Minimum Entropy production (1945) both belong to this Linear
Non-Equilibrium Thermodynamics.

Today this branch of Thermodynamics of irreversible processes,
is a classical subject and is adequately treated in many monographs
(especially de Groot and Mazur, 1961).

Is it necessary to go further? Some examples will suffice to stress
the interest of an extension of thermodynamics into the non-linear
region. Let us first consider the case of chemical reactions. It is well
known that if the reaction rate is sufficiently slow not to perturb to
an appreciable extent the Maxwell equilibrium distribution of each
component, a macroscopic description in terms of average con-
centrations of the components is possible (for more details, see e.g.
Prigogine, 1967). Still the relations between chemical rates and
affinities are in general non-linear.

Another important field of research where macroscopic methods
have been applied with success is hydrodynamics. Of special interest
for us will be the theory of hydrodynamic stability. It is well known
that some simple patterns of flow (such as the Poiseuille flow) are
realized only for certain ranges of pa.rametew Beyond these ranges
they become unstable.

As a simple example we may consider the thermal stability in
horizontal layers of a fluid heated from below. This is the so-called
Bénard problem which we shall study in detail in Chapters XI and
XTI of this monograph (Chandrasekhar, 1961). For some critical
value ‘of a dimensionless parameter called the Rayleigh number, the
state of the fluid at rest becomes unstable and cellular convection
sets in. Now both below and beyond this instability a macroscopic
description of the fluid is possible. Thermodynamic considerations
should then be of great importance to understand the location and
the meaning of the instability.

Our central problem is thus the following: can we extend the
methods of thermodynamics to treat the entire range of phenomena
starting from equilibrium and including non-linear situations and
instabilities ?
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We shall see that this extension is indeed possible for the whole
class of situations for which the local entropy may be expressed in
terms of the same independent variables as if the system were at
equilibrium. This is the assumption of ‘local equilibrium’, the
validity of which implies the dominance of collisional effects which
tend to restore thermodynamic equilibrium. In other words, at no
moment molecular distribution functions of velocities or of relative
positions, may deviate strongly from their equilibrium form (Chapter
II, §2). This condition should be considered here as a sufficient
condition for the application of thermodynamic methods. It is
quite possible that a unified thermodynamic approach could be set
up under less restrictive conditions. However, we do not explore this
possibility here.

Even so restricted, the extension referred to above, leads to a
substantial increase of the power of macroscopic methods. Various
problems treated till now by quite different methods may be ap-
proached in a new unified way; even some problems of classical
equilibrium thermodynamics find their natural answer once formu-
lated in the frame of a more general approach.

Any theory whose aim is to include the possibility of new organiza-
tion of matter in far from equilibrium conditions such as those
applying beyond an unstable transition, has to face the problem of
fluctuations. A purely causal description is no longer sufficient even
for systems involving a large number of degrees of freedom. As an
illustration consider a typical problem in hydrodynamics: the
stability of the laminar flow of a fluid. Suppose a small fluctuation
OE,,, appears in the kinetic energy. To this fluctuation will correspond
some small ‘hump’ in the velocity profile, as shown on the figure.

el s

Fluctuation in the velocity profile

If 0E,,, vanishes everywhere for ¢ — co, the flow is stable. On the
contrary, if 8E,,, increases with time, then a new state of flow will
be reached. As is well known from classical hydrodynamics, this will
be the case if the Reynolds number lies beyond a critical value
corresponding to turbulence.
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‘The main point is therefore the following: a new ‘structure’ is
always the result of an instability. It originates from a fluctuation.
Whereas a fluctuation is normally followed by a response that
brings the system back to the unperturbed state, on the contrary, at
the point of formation of a new structure, fluctuations are amplified.
This idea is of course the basis of classical stability theory derived
from normal mode analysis (e.g. Chandrasekhar, 1961). One consi-
ders small perturbations around a steady state which satisfy linear
equations of evolution. The time dependence of each normal mode
is of the form exp wt where w is in general a complex quantity
o, + 1 w;. The stability condition implies then that for each normal
mode:

w, <0 (1)

One of our main objects will be to relate stability theory to the
thermodynamics of irreversible processes in order to obtain as much
information as possible, independently of a detailed normal mode
analysis. Clearly, we must then in some way incorporate in our
thermodynamic description, the response of the system to fluctu-
ations. In other words we have to build a generalized thermodynamics
which will also include a macroscopic theory of fluctuations.

Let us emphasize that the fluctuations may have either an external
or an internal ori\gin. They may result for example, from a temporary
disturbance of the boundary conditions. However, the existence of
many degrees of freedom in a macroscopic system automatically
implies spontaneous fluctuations. The stability conditions of a given
process then become the conditions for the regression of fluctuations.

The problem of the response to spontaneous fluctuations is also
closely related to the famous ‘Le Chatelier-Braun’ principle of
classical thermodynamics (or ‘moderation’ principle). It states
(Prigogine and Defay, 1954, Chapter XVII):

‘Any system in chemical equilibrium undergoes, as a result of a
variation in one of the factors governing the equilibrium, a compen-
sating change in a direction such that, had this change occurred
alone it, would have produced a variation of the factor considered in
the opposite direction’.

For equilibrium situations, the moderation principle when applied
to intensive variables (pressure, temperature, mole fractions) can
easily be proved.

But what happens when we apply the moderation principle to
non-equilibrium situations ?
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A step towards the discussion of such problems was the proof of
the theorem of minimum entropy production (I. Prigogine, 1945).
When a steady state is characterized by the minimum of entropy
production, fluctuations will regress exactly as in thermodynamic
equilibrium and the moderation principle will be satisfied.

The very existence of hydrodynamic instabilities shows that
this is no longer necessarily so for situations far from equilibrium.
We come to one of the most basic questions of macroscopic physics:
Under which conditions may we extrapolate results obtained by equili-
brium thermodynamics or by linear non-equilibrium thermodynamics
to far from equilibrium conditions? More specifically: What is the
generality of instability phenomena ? What is the possibility of their
occurrence in purely dissipative systems ? And how is a system being
organized beyond such a transition ?

Classical thermodynamics had solved the problem of the com-
petition between randommness and organization for equilibrium
systems. But what happens far from equilibrium? Can we find
there new organizations, new structures stabilized through the
interaction with the outside world ?

From a macroscopic point of view it is necessary to distinguish
between two types of structure:

(a) equilibrium structures;
(b) dissipative structures.

Equilibrium structures may be formed and maintained through
reversible transformations implying no appreciable deviation from
equilibrium. A crysta] is a typical example of an equilibrium struc-
ture. Dissipative sfructures have a quite different status: they
are formed and maintained through the effect of exchange of energy
and matter in non-equilibrium conditions. The formation of cell
patterns at the onset of free convection (Chapter XI) is a typical
example of a dissipative structure. We may consider a convection
cell as a giant fluctuation stabilized by the flow of energy and matter
prescribed by the boundary conditions.

As we shall see, such dissipative structures may, under well
defined conditions, exist also for open systems involving chemical
reactions (especially Chapters VII, XIV-XVI).

A hint towards a thermodynamic theory which would also include
a macroscopic theory of fluctuations, is provided by the Einstein
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theory of fluctuations. More precisely a generalization of Einstein’s
theory which may be applied both to equilibrium and non-
equilibrium macroscopic evolutions (Chapter VIII) indicates that
the basic quantity to consider is the ‘curvature’ 428 of the entropy.
For isolated systems and small fluctuations, this quantity is identical
to the entropy change considered by Einstein. But the important
feature is that 628 retains a simple physical meaning under much
more general conditions.

In the whole range of macroscopic physics for which the local
equilibrium assumption remains valid, 628, or its straightforward
generalization involving inertial effects, is a negative definite quadra-
tic function.

The problem of the regression of fluctuations, or equivalently of
the validity of a moderation principle, leads to the study of the
time evolution of 628. This approach corresponds clearly to the
basic ideas of Liapounoff’s stability theory (e.g. La Salle and Lefshetz,
1961, Pars, 1965).

As well known non-equilibrium thermodynamics is based on the
balance equation for entropy:

d8 =d.,8 + 4,8 (2)

with
dsS >0 (3)

Here d,S denotes the contribution of the outside world (entropy
flow) and d,S, the entropy production due to the irreversible pro-
cesses inside the system. This term d,S, may be expressed in terms
of the rates of the irreversible processes and the corresponding
forces. We wish now to go beyond equation (2) and to establish
a new balance equation for 68, giving dé2S. The corresponding source
term, which we call the ‘excess entropy production’, is of fundamental
importance. Whenever its sign is positive, the system is stable. One
finds that near equilibrium this condition is identically satisfied.
The Le Chatelier—Braun principle is then also satisfied and fluctua-
tions regress. However far from equilibrium this is no longer so.
At the marginal state, corresponding to the transition between
stability and instakility, the excess entropy production vanishes.
In this way the physical meaning of instabilities can be studied with
great generality+.

+ At least as long as both the unperturbed and perturbed states may be
described macroscopically.
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We see that the method followed here combines various points
of view: the emphasis on balance equations (as in linear non-
equilibrium thermodynamics), the classical thermodynamic stability
theory, Liapounoff’s stability theory and an extension of Einstein’s
fluctuation formula. All of them contribute to achieve a unified
treatment of macroscopic physics, involving both reversible and
irreversible processes in both the near and far from equilibrium
situations.

It is worth noting that in a very interesting paper, G. N. Lewis
(1931) proposed to unify fluctuation theory and thermodynamics.
However, he was concerned only with equilibrium situations, where
the effect of fluctuations is generally negligible (with the exception
of critical phenomena).

Before we comment on the organization of this monograph, we
would like to mention another major result of our approach. We
derive a very general inequality valid for any evolution of a macro-
scopic system under fixed boundary conditions. Because of this high
degree of generality, we call this inequality the ‘universal’ evolution
criterion (Chapter IX). Usually this criterion appears in the form
of a non-exact differential which means that no thermodynamic
potential in the classical sense, can be associated with this criterion.
Still the -criterion may be used to obtain a generalization of the
concept of thermodynamic potential. This is ‘local potential’
(Chapter X). The main feature of the local potential is that each
unknown function (e.g. the distribution of temperature in the non-
linear heat conduction problem) appears twice: once as an average
quantity and once as a fluctuating quantity. This then leads to a
generalization of classical variational techniques valid for non-self-
adjoint problems. The local potential presents a minimum (in the
functional sense) when the average quantity coincides with the most
probable one.

. Applications of the local potential method to the convergence of
successive approximations are presented in Chapter X, while a few
examples of its use for the solution of stability problems are studied
in Chapter XII.

In order to obtain a self-contained text we have reformulated in
Chapters I-IV a number of important results of equilibrium thermo-
dynamics as well as of linear non-equilibrium thermodynamiecs. This
includes the conservation laws, the second law of thermodynamics,
the basic theorems of linear non-equilibrium thermodynamics
such as the Onsager relations, the theorem of minimum entropy
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production, and finally the classical Gibbs—Duhem stability theory.
These elements are presented here in a form which should permit the
reader to understand the more recent developments without having
‘to refer elsewhere.

Chapters V-VII are devoted to an extension of classical thermo-
dynamie stability theory to general equilibrium and non-equilibrium
conditions. It is interesting to note that even for equilibrium condi-
tions, the classical theory was restricted to the few cases where
the minimum of a thermodynamic potential exists (for example
systems of given volume and temperature). In many cases what
is given are well defined boundary conditions and not the values
of some thermodynamic variables inside the system. As a rule, no
minimum property of a thermodynamic potential is then available
and we had first to develop a new approach to the stability problem
(Chapter V) which could then be extended to non-equilibrium
situations. As already mentioned the essential result of this approach
is the introduction of the so-called ‘excess entropy production’. The
sign of this quantity is directly related to the stability of a non-
equilibrium process in respect to its fluctuations.

The extension of Einstein’s fluctuation theory is discussed in
Chapter VIII. In a macroscopic theory such as the one considered in
this monograph, fluctuations are introduced in a somewhat ad hoc
manner to test stability. This method of treatment has some serious
draw-backs. For instance, it cannot lead to an estimate of the
time delay which may be involved in the transition from one stable
‘state to another. Also ‘average equations’ such as the equations
of chemical kinetics may correspond only to a first approximation,
in the vicinity of such a transition point, as the fluctuations are
then likely to increase much beyond their normal level.

These are very interesting questions and we are actively involved
in the'study of some of these aspects. In the near future publications,
we hope to go beyond the few preliminary results stated in Chapters
VIII, XIV-XVI. _

We have already mentioned in this introduction the concepts
of ‘universal evolution eriterion’ and of ‘local potential’ studied in
Chapter IX and X. i

Chapters XI-XVI are devoted to applications. Because of the
variety of problems to which the theory may be applied we wished
only to present a few examples to illustrate some characteristic
features, We begin in Chapter XI with stability problems for fluid
layers such as the problem of thermal instability (Bénard problem).
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Our thermodynamic stability criterion then leads directly to the
variational principles for the Bénard problem as derived from the
normal mode analysis by Chandrasekhar and others (Chandrasekhar,
1961). In our opinion, this illustrates the degree of unification
achieved in our approach between thermodynamic and hydrodyna-
mic methods.

In Chapter XII, we deal with more complicated stability problems
for fluid layers, such as laminar flow instability, and the mutual in-
fluence of flow and thermal gradients on stability. This also provides
typical illustrations of the local potential technique.

A quite different type of problem is studied in Chapter XIIIT
where we deal mainly with the stability of finite amplitude wave
propagation in ideal fluids. The interesting point is that in general
the excess entropy production (more exactly its generalization
including inertial effects) appears as either a positive definite or a
negative definite function. As a consequence the stability problem
can then be solved without any reference to the properties of the
marginal state. We have here examples of time-dependent evolutions
which may be unstable (compression waves). There exist therefore
situations where a solution of the partial differential equations of
macroscopic physics (here of wave propagation) while correct, does
not correspond to stable physical situations.

Chapters XIV-XVI are devoted to the investigation of open
chemical systems. It seems to us that such a study presents a special
interest due to a number of unexpected features and the direct
relevance of the results to biological problems.

Far from equilibrium we may then have oscillations in time
around the steady state. We may have also either instabilities, or
multiple steady states each being stable in some range. The problem
of oscillations is studied in Chapter XIV. The first models for
chemical oscillations were introduced a long time ago initially by
Lotka (1920) and Volterra (1931). But it is only in recent years,
especially in the domain of biochemical reactions, that a consider-
able amount of data on low frequency chemical oscillations has
become available.

As pointed out in Chapter XIV there are two types of chemical
oscillations: the first corresponds to oscillations on the ‘thermodyna-
mic branch’. This is the situation realized in the Lotka—Volterra
model. More precisely this model corresponds to the limit of infinite
chemical affinity. The other type corresponds to oscillations beyond
the marginal stability of the thermodynamic branch. This leads
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then to the concept of ‘limit cycle’ introduced by Poincaré in
theoretical mechanics (1892). These limit cycles are of great interest,
as they provide us with a beautiful example of time order generated
by irreversible processes.

Chemical instabilities which lead to space organization are studied
in Chapter XV. Such ‘symmetry breaking instabilities’ are of special
interest as they lead to a spontaneous ‘self organization’ of the system
both from the point of view of its space order and its function. We have
here typical examples of what we have called dissipative structures
corresponding to a low entropy value. Such situations may arise in
systems which are able to use part of the energy or matter exchanged
with the outside world to establish a macroscopic internal order.

The existence of these dissipative structures has now been con-
firmed both by computer and laboratory experiments (Biisse 1969,
Herschkowitz, 1970). In far from equilibrium conditions, chemical
reactions may compensate the effect of diffusion, and lead to organ-
ized structures on a macroscopic level. This is a fact of primary
importance and is likely to open new perspectives in classical
thermodynamics.

Moreover the requirements necessary to obtain an instability in
far from equilibrium conditions are compatible with the mechanisms
of some of the most important biochemical reactions responsible
for the maintainance of biological activity (Prigogine, Lefever,
Goldbeter and Herschkowitz, 1969).

Another interesting point is that the variety of steady states
accessible to an open system may become much larger in-far from
equilibrium conditions. Examples are studied in Chapter XVI.
Again, this enlarged variety of possibilities has important biological
implications. As an illustration we study a model of membrane
excitation due to Blumenthal, Changeux and Lefever (1969) in
which co-operative behaviour together with irreversible processes
far from equilibrium lead to a new type of ‘dissipative’ phase
transition.

All these results indicate that-dissipation may indeed be a source
of order both in time and space. It is difficult to avoid the feeling
that such considerations may ultimately contribute to narrow the gap
which still exists today between biology and theoretical physics. Far
from equilibrium and beyond the instability we have really a new
state of matter induced by a prescribed flow of free energy. Do
biological processes belong to this state ? This is quite a challenging
preblem which still requires a considerable amount of thought and
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study. At least what seems henceforth certain is that important
biological processes involve situations beyond the instability and
consequently, can not be accounted for by mere extrapolation from
thermodynamic equilibrium.

This monograph comprises three distinct parts, the first (Chapters
I-IX), is devoted to the general theory, the second (Chapters X—
XTIT), to the variational techniques and hydrodynamic applications,
and finally the third (Chapters XIV-XVII), to instabilities in
chemical systems. Readers particularly interested in the last part,
which contains a discussion about the possible application to biology,
may leave out Part II. :

The french philosopher Heuri Bergson (1907) called the second
law of thermodynamics the most ‘metaphysical’ of all laws of nature.
Whether a compliment or a criticism, this applies also to the
‘generalized thermodynamics’ we develop in this monograph.

- Classical thermodynamics is essentially a theory of ‘destruction of
structure’. One may even considér the entropy production as a
measure of the ‘rate’ of this destruction. But in some way such a
theory has to be completed by a theory of ‘creation of structure’,
lacking in classical thermodynamics. .

We have seen that in addition to the entropy production this
approach introduces the ‘excess entropy production’ which seems to
be the basic quantity whose behaviour characterizes the occurrence
of new structures and their stability. In the case of chemical
reactions we shall see that the stability is determined by a rather
complex inter-play of both kinetic and thermodynamic quantities.
No statements completely independent of kinetics can be made at
present. Specific classes of chemical reactions have to be considered
(e.g., systems of monomolecular reaetions, cross-catalytic reactions).
As a consequence there exists a whole wealth of possibilities. This
contrasts with the wniversal character of the statements made by
classical thermodynamics about systems approaching equilibrium.

But this multiplicity of possibilities seems precisely necessary to
describe thé various far from equilibrium situations. A flow of energy
may organize systems and decrease their entropy (as in the case of
symmetry breaking instabilities referred to before). In other cases
it may tncrease their entropy. Likewise it may also increase their
entropy production as in the Bénard instability by adding a new
mechanism of dissipation, or it may decrease it. We shall study
examples of all these situations in this monograph.

The importance of stability theory has been emphasized in a wide
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range of fields of research such as biology, economics, sociology. To
quote P. Weiss (1968): ‘Considering the cell as a population of parts
of various magnitude, the rule of order is objectively described by
the fact that the resultant behaviour of the population as a whole
is_infinitely less variant from moment to moment than are-the
momentary activities of its parts’.

This statement applies as well to the cell as to a haman population.
In spite of this stability property,a modification of the state variables
may lead to a new pattern of organization.

Now in all these cases we basically deal with situations which
correspond much more closely to the non-equilibrium conditions
than to the situations studied by classical equilibrium thermodyna-
mics. Whichever we consider, a cell or a society, it interacts with its
medium and the exchange of energy and matter is an essential
element of its very existence.

Therefore we may hope that the far from equilibrium approach
we develop in this book may act as an element of unification bringing
closer problems belonging to a wide range of disciplines.

It is well known that the most detailed analysis of ‘order’ made in
physics refers to equilibrium situations. But here we have to extend
this concept to non-equilibrium situations. To borrow an expression
introduced by P. Weiss (1968), we must study ‘molecular ecology’,
analyse the order in terms of population dynamics and compare it
with the order in equilibrium systems. The relation between this
order and probability is a completely different one than that of
equilibrium. In the cell pattern corresponding to thermal instabilities,
a macroscopic number of molecules has a coordinated motion over
macroscopic times. This would correspond for equilibrium situations
to a probability.smaller than anything we could imagine.

But even the time evolution of such systems has to, be described
in new terms. We have already emphasized the relation between
fluctuations and instabilities. Therefore the evolution of the system
now involves both deterministic and statistical aspects and from the
macroscopic point of view at least, contains some essential inde-
terministic features.

Already classical thermodynamics had added a new element to
the concept of time through distinction between reversible and
irreversible processes: Now still another element is added; the
history of successive instabilities. In this way such systems acquire
a ‘historical’ dimension. Their state can no longer be characterized
by the value of variables at a given moment, but in addition we need
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to know the succession of instabilities which have occurred in the
past. Biological systems carry with them their information. Is this
information not at least related to the ‘historical dimension’ ?

These are fascinating questions, and we feel that we are only at
the very beginning. Still, as we shall see, specific examples may
already be discussed along these lines.

Certainly one of the most attractive features of thermodynamics
has always been its power of unification. its reduction of a large
variety of phenomena to a few basic ideas. This is the tradition we
have tried to follow in this monograph. -
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