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Structure and Function of Permeability Barriers

Pharmacol. Skin, vol. 1, pp. 1-9 (Karger, Basel 1987)

The Stratum Corneum Two-Compartment
Model and Its Functional Implications

Peter M. Elias, Kenneth R. Feingold, Gopinathan K. Menon,
Stephen Grayson, Mary L. Williams, Gerhard Grubauer
Dermatology and Medicine Services, Veterans Administration Medical Center

and Departments of Dermatology and Medicine, University of California
School of Medicine, San Francisco, Calif., USA

Evidence for the Two-Compartment Model

Appreciation that the stratum corneum should be accorded more
respect than a sheet of plastic wrap comes from a raft of observations made
over the past few years [1-3] (table I). Although the importance of lipids for
both barrier function [4] and the water-retentive properties [5] of the
stratum corneum was well appreciated, Middleton [6] first noted that it was
the organization of lipid into ‘shells’ that accounted for water retention.
Soon thereafter, the existence of separate hydrophilic and hydrophobic
pathways was suggested from physical-chemical observations [7]. Morpho-
logic evidence for lipid-protein segregation came soon thereafter. First,
freeze-fracture and thin section studies demonstrated lipid bilayers exclu-
sively in the stratum corneum interstices, with the absence of lipid struc-
tures within the corneocyte cytosol [8—10]. Next, histochemical and cyto-
chemical studies clearly displayed the process of lipid sequestration to
membrane domains [10, 11]. Why these lipid domains had not been dem-
onstrated previously, reflects the predominance of nonpolar lipids in these
domains, and therefore the ease which they are extracted during routine
microscopic processing [10]. The localization of lipids to intercellular
domains can be further deduced from the ease with which certain lipid
solvents disperse this tissue into cell suspension [11, 12], and the further
ability of such solvent extracts to recombine with dispersed cells to produce
a functionally competent tissue [12]. The first direct evidence for lipid
localization to intercellular domains was provided by biochemical analysis
of membrane couplets, which were prepared without loss of intercellular
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Table I. Evidence for the stratum corneum two-compartment model

1 Physicochemical evidence for two pathways of transport of lipid and
water-soluble molecules

2 Freeze-fracture morphology

3 Histochemistry and fluorescence staining of lipids in frozen sections

4 Dispersion by lipid solvents

5 Co-localization of lipid catabolic enzymes

6 Membrane isolation and characterization, including X-ray diffraction

lipid [13]. These preparations not only contained multiple bilayers, identi-
cal to intact stratum corneum, but they also were lipid-enriched, accounting
for over 80% of all the lipid in the stratum corneum [13]. Moreover, they
displayed both the same lipid distribution of whole stratum corneum [13],
and duplicated the x-ray diffraction pattern previously ascribed to the ‘shell’
of lipids, previously thought to fill interfilamentous domains within the
corneocyte cytosol [14]. Finally, one can assume that the localization of a
variety of lipid catabolic enzymes (steroid sulfatase [15]; lipase [16]; sphin-
gomyelinase [16]; phospholipases [16]) to stratum corneum intercellular
domains represents co-localization of hydrolytic enzymes with their
respective lipid substrates in stratum corneum membrane domains.

Formation of the Two-Compartment Model

It is now well appreciated that the two-compartment system is formed
by the deposition of epidermal lamellar body contents in intercellular
domains at the granular-cornified cell interface [8, 9]. Although secretion of
this organelle has long been linked to both barrier formation and desqua-
mation [1-3], its role in both of these functions was solidified with the
isolation of these organelles [18, 19]. Subsequent characterization of the
lipid and enzymatic content of lamellar bodies has provided a clearer
picture of the molecular events associated with the formation of the stratum
corneum intercellular compartment. Lamellar bodies are enriched in phos-
pholipids [19, 20], free sterols [19], and glycosphingolipids [19], including
certain distinctive acylglycosphingolipid species [21] that may be respons-
sible for the disc-like bilayers that appear in lamellar bodies [22]. Although
long suspected of being modified lysosomes due to cytochemical evidence of
hydrolytic enzyme contents [1-3, 23], biochemical studies revealed a lim-
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Fig. 1. Dual functions of the epidermal lamellar body. Summary of lipid biochemical
and enzyme biochemical studies on isolated epidermal lamellar bodies [20]. Lamellar
bodies contain free sterols and polar lipid precursors of stratum corneum lipids, and their
lipid catabolic enzymes (lipases, glucosidases) presumably mediate this conversion after
secretion. The other nonlipolytic enzymes (acid phosphatase, proteases) may participate in
desquamation.

ited array of hydrolases [16, 17, 20, 24, 25], but a striking absence of certain
typical lysosomal enzymes, including B-glucuronidase, galactosidase, and
arylsulfatases A and B [20, 25]. The lipid catabolic enzymes that have been
demonstrated in lamellar bodies seem ideally suited to bring about the
transformation of the polar lipid contents of lamellar bodies to the non-
polar species that eventuate in the stratum corneum (fig. 1). However, the
regulation, timing, and location of these degradative events is still not
certain. If all phospholipid and glycolipid species are completely absent
from the stratum corneum, as claimed in some studies [26, 28], then
degradation must occur very soon after secretion. Yet, others find some
glycolipids and phospholipids in the lower stratum corneum [11, 17, 29],
suggesting that lipid transformations in the intercellular spaces may be a
more gradual process.

In addition to lipid catabolic enzymes, the lamellar body is also
enriched in acid phosphatase [20, 24] and proteases [20]. Whether these
enzymes participate in barrier formation is unclear at present, but it is more
likely that they participate in desquamation, presumably by degrading
extracellular glycoproteins, desmosomes, etc. (fig. 1). The recent demon-
stration of abnormal lipid contents of lamellar bodies in one disorder of
cornification, suggests that not only the enzyme contents, but also distur-
bances in the bulk lipid content of these organelles could affect desquama-
tion [30].
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Table I1. Predictions based upon two-compartment model

A Altered barrier is associated with varied intercellular lipid content
1 Essential fatty acid deficiency
2 Marine mammals
3 Xeric-adapted avians

B Barrier function regulates lipid biosynthesis
1 Solvent/detergent treatment
2 Essential fatty acid deficiency

C Penetration pathways reflect two-compartment structure

D Permeability is related to intercellular lipid content
1 Topographic variations
2 Solvent/detergent treatment
3 Marine mammals/avian models

E Desquamation is regulated by lipid content

Implications of the Two-Compartment Model

The two-compartment model has been amply tested in recent years. Of
the predictions in table II, all have been established and exceptions have not
been forthcoming. The importance of intercellular lipids for the barrier is
underscored by the defective contents of lamellar bodies in essential fatty
acid deficiency [31]. As a result of defective intercellular lipid, large water-
soluble molecules traverse the stratum corneum interstices through once-
impervious domains [31). That linoleic acid, presumably as an o-acyl ester
within sphingolipids [32], is specifically corrective has been shown
repeatedly. Moreover, prior conversion of linoleic acid to prostaglandins,
with normalization of the high-turnover state, is not required [33-35].

The importance of intercellular lipids for barrier function is under-
scored by two recent, but separate bodies of work: Feingold et al. [36] have
shown, first, that the epidermis is an important site of sterologenesis [36],
and, second, that selective removal of intercellular, oil red O-stainable lipid
from the stratum corneum with organic solvents provokes a compensatory
burst in sterologenesis that returns to normal as the barrier abnormality
corrects itself [37]. This dynamic approach has been extended to essential
fatty acid deficient animals, who likewise demonstrate accelerated sterol
synthesis in relation to barrier dysfunction [38]. The role of the barrier in
regulating sterologenesis is underscored by localization of this burst in
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synthesis solely to the epidermis, and specifically over those skin sites where
barrier function is abrogated [37, 38]. Barrier function apparently regulates
not only sterologenesis, but also fatty acid synthesis in the above models
[39]. Hence, barrier requirements appear to regulate epidermal lipogenesis
globally, rather than merely affecting specific epidermal lipid species.

The second group of experiments encompass comparative studies of
lipid distribution and content in relation to barrier function in normal vs.
xeric-adapted avians [40-42] and in nonfur-bearing marine mammals (ce-
taceans, manatees) [42, 43]. These studies can be summarized as follows: (a)
intercellular lipid deposition is accelerated when avians are subjected to
xeric stress, and their barrier function improves accordingly [40, 41 ], and (b)
in marine mammals, intercellular stratum corneum lipid species remain
more polar, and do not undergo the loss of polarity that characterizes
terrestrial adaptation [42]. This difference presumably reflects the lesser
barrier requirements of marine mammals. Moreover, the fatty acids on
marine mammal lipids are shorter and more unsaturated than those on
equivalent terrestrial species [43]. These results suggest that intercellular
lipid location and composition in all terrestrial homeotherms subserve
comparable functions, and are regulated by similar factors.

Based upon the two-compartment model, one also would predict that
lipid-soluble agents, such as topical steroids, traverse intercellular domains.
Although difficult to demonstrate morphologically, with the technique of in
situ precipitation, lipid-soluble substances can be trapped at their penetra-
tion sites, and at least one such molecule has been localized to the intercel-
lular pathway [44]. Moreover, after either solvent or detergent treatment,
normally excluded, water-soluble agents gain entry to interstitial domains
deep within the stratum corneum [1 2]. Moreover, site-specific variations in
permeability have been shown to be related to differences in lipid content:
neither the thickness nor the number of cell layers were contributory [45].
These latter studies provide rational explanations for two clinical problems:
eczema, which occurs most readily on the palmar surfaces, has the lowest
intrinsic lipid content, and hence is most vulnerable to further depletion
from hot water, detergents, and solvents, while facial skin, which has the
greatest lipid content, provides ready access to potent topical steroids —
hence the all-too-common occurrence of atrophy after application of potent
topical agents.

The two-compartment model also possesses vast implications for des-
quamation. That lamellar body-derived lipids regulate desquamation is
supported by numerous studies linking abnormal desquamation to inher-
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ited, lipid-metabolic disorders, and to drug-induced ichthyoses. Because the
scope of this review is limited to the permeability barrier, the reader who
desires further information about this subject is referred to several recent
reviews [3, 46-47].
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Summary of Discussion

The following points were discussed with the participation of Drs. Bourke, Hadgraft,

Gibson, Krueger, Pruniéras, Rougier, Busse, Schaefer and Ponec:

Intercellular lipid channels, which occupy more substantial volumes than generally

assumed, are, at least in the mid and outer stratum corneum the main transport pathways
involved in drug delivery. Whether this also holds true for the more compact lower layers
remains to be proven by more refined techniques such as the use of soluble tracers and
autoradiography.
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Increased penetration of lipophilic drugs in the presence of DMSO or acetone may be
caused by a transitory destruction of membranous structures.

There is no experimentally supported explanation for the abnormally rapid flux of
some water-soluble substances such as glycerol. One explanation could be the existence of
not only lipophilic, but also hydrophilic domains.

Experiments demonstrating the presence of catabolic enzymes in all layers of the
stratum corneum have always been performed after rehydration. Whether these enzymes
are thus active in the upper stratum corneum in vivo remains to be proven. Another
problem is the availability of lipid substrates in situ.

Reports on the defective amount of lipids in atopic epidermis need further support
from a comparative study of a statistically relevant number of normals and atopics (at least
100 each).

About 40% of epidermal linoleic acid is stored in the sphingolipids of the lamellar
bodies. In animals receiving an essential fatty acid deficient diet, linoleic acid is replaced by
oleic acid. This may explain the disappearance of disc structures in the lamellar bodies
under EFA deficiency and their reappearance after oral linoleic acid intake. However, no
correlation study has yet been done.

The heterogenicity of the stratum corneum impedes the transferability from the body
site to the other of penetration data obtained by the application of Fick’s law.

The flux of water molecules through the stratum corneum may be involved in the
regulation of lipid biosynthesis. This possibility, however, needs further study.

Uwe Reichert



