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Introduction

This book addresses basic questions about compositions of quadratic forms in the
sense of Hurwitz and Radon. The initial question is: For what dimensions can they
exist? Subsequent questions involve classification and analysis of the quadratic forms
which can occur in a composition.

This topic originated with the “1, 2, 4, 8 Theorem” concerning formulas for a
product of two sums of squares. That theorem, proved by Adolf Hurwitz in 1898,
was generalized in various ways during the folowing century, leading to the theories
discussed here. This area is worth studying because it is so centrally located in
mathematics: these compositions have close connections with mathematical history,
algebra, combinatorics, geometry, and topology.

Compositions have deep historical roots: the 1, 2, 4, 8 Theorem settled a long
standing question about the existence of “n-square identities” and exhibited some
of the power of linear algebra. Compositions are also entwined with the nineteenth
century development of quaternions, octonions and Clifford algebras.

Another attraction of this subject is its fascinating relationship with Clifford al-
gebras and the algebraic theory of quadratic forms. A general composition formula
involves arbitrary quadratic forms over a field, not just the classical sums of squares.
Such compositions can be reformulated in terms of Clifford algebras and their invo-
lutions. There is also a close connection between the forms involved in compositions
and the multiplicative quadratic forms introduced by Pfister in the 1960s.

All the known constructions of composition formulas for sums of squares can be
achieved using integer coefficients. A composition formula with integer coefficients
can be recast as a combinatorial object: a special sort of matrix of symbols and signs.
These “intercalate” matrices have been studied intensively, leading to a classification
of the integer compositions which involve at most 16 squares.

Finally this topic is connected with certain deep questions in geometry. For in-
stance, composition formulas provide examples of vector bundles on projective spaces,
of independent vector fields on spheres, of immersions of projective spaces into eu-
clidean spaces, and of Hopf maps between euclidean spheres. The topological tools
developed to analyze these topics also yield results about real compositions.

Let us now describe the original question with more precision: A composition
formula of size [r, s, n] is a sum of squares formula of the type

CT4xa+4xD) Gl +yat+ A=+ B+ + 2
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where X = (x1,x2,...,x,) and Y = (y1, y2, ..., ys) are systems of indeterminates
and each zz = zx(X,Y) is a bilinear form in X and Y. Such a formula can be
viewed in several different ways, with each version providing different insights and
techniques. Hurwitz restated the formula as a system of r different n x s matrices. More
geometrically (assuming that the z;’s have real coefficients), the formula becomes a
bilinear pairing
f:R xR — R"

which satisfies the norm condition: |f(x,y)| = |x| - |y| for x € R" and y € R*.
For example the usual multiplication of complex numbers provides a formula of size

[2, 2, 2]. In the original sums-of-squares language, this bilinear pairing becomes the
formula:

&7 +x)(0F +¥) =28 +23 where z; = x1y1 — x2y2 and 22 = x1y2 + xX2¥1.

The quaternion and octonion algebras, discovered in the 1840s, provide similar for-
mulas of sizes [4, 4, 4] and [8, 8, 8]. Using his matrix formulation Hurwitz (1898)
proved that a formula of size [n, n, n] exists if and only if 7 is 1, 2, 4 or 8. Hurwitz and
Radon used similar techniques to determine exactly when formulas of size [, n, n] can
exist. It is far more difficult to analyze compositions of sizes [r, s, n] whenr, s < n.

These ideas have been generalized in two main directions, determining the contents
of the two parts of this book.

Part I: If the composition involves general quadratic forms over a field in place of the
sums of squares, what can be said about those forms? Interesting results have been
obtained for the classical sizes [r, n, n].

Part II: What sizes r, s, n are possible in the general case? Does the answer depend
on the field of coefficients? Many partial results have been obtained using methods of
algebraic topology, combinatorics, linear algebra and geometry.

Further descriptions of the historical background and the contents of this work appear
in Chapter 0 and in the Introduction to Part II.

Readers of this work are expected to have knowledge of some abstract algebra. The
first two chapters assume familiarity with only the basic properties of linear algebra
and inner product spaces. The next five chapters require quadratic forms, Clifford
algebras, central simple algebras and involutions, although many of those concepts
are developed in the text. For example, Clifford algebras are defined and their basic
properties are established in Chapter 3. Later chapters assume further background. For
example Chapter 11 uses algebraic number theory and Chapter 12 employs algebraic
topology.

Each chapter begins with a brief statement of its content and ends with some
exercises, usually involving alternative methods or related results. In fact many related
topics and open questions have been converted to exercises. This practice lengthens
the exercise sections, but adds some further depth to the book. The Notes at the end
of each chapter provide additional comments, historical remarks and references. At
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the end of the book there is a fairly extensive bibliography, arranged alphabetically by
first author.

Most of the material described in this book has already appeared in the mathemat-
ical literature, usually in research papers. However there are many items that have not
been previously published. These include:

e an improved version of the Eigenspace Lemma (2.10);

e adiscussion of anti-commuting skew-symmetric matrices, Exercise 2.13;
o the trace methods used to analyze (2, 2)-families, Chapter 5;

e the treatment of composition algebras, Chapter 1.A (due to Conway);

e the analysis of “minimal” pairs, Chapter 7;

e properties of the topological space of all compositions, Chapter 8;

e monotopies and isotopies, Chapter 8 (due to Conway);

e the matrix approach to Pfaffians, Chapter 10;

e Hasse principle for divisibility, Chapter 11.A (due to Wadsworth);

e general monomial compositions, Chapter 13.B;

e the characterization of all compositions of codimension 2, (14.18);

e nonsingular and surjective bilinear pairings over fields, Exercises 14.16-19.

This book evolved over many years, starting from series of lectures I gave on this
subject at the Universitdt Regensburg (Germany) in 1977, at the Universidad de Chile
in 1981, at the University of California-Berkeley in 1983, at the Universitdt Dortmund
(Germany) in 1991, at the Universidad de Talca (Chile) in 1999 and several times at
the Ohio State University. I am grateful to these institutions, to the National Science
Foundation, to the Alexander von Humboldt Stiftung and to the Fundacién Andes for
their generous support. It is also a pleasure to thank many friends and colleagues for
their interest in this work and their encouragement over the years. Special thanks are
due to several colleagues who have made observations directly affecting this book.
These include J. Adem, R. Baeza, E. Becker, A. Geramita, J. Hsia, I. Kaplansky,
M. Knebusch, K. Y. Lam, T. Y. Lam, D. Leep, T. Smith, M. Szyjewski, J.-P. Tignol,
A. Wadsworth, P. Yiu, and S. Yuzvinsky. Extra thanks are due to Adrian Wadsworth
for providing great help and support in the early years of my mathematical career.

I am also grateful to those colleagues and students who have proofread sections
of this book, finding errors and making worthwhile suggestions. However I take full
responsibility for the remaining grammatical and mathematical errors, the incorrect
cross references, the inconsistencies of notation and the gaps in understanding.

As mentioned above, this book has been in progress for many years. In fact it is
hard for me to believe how long it has been. The writing was finally finished in 1998,
barely in time to celebrate the centennial of the Hurwitz 1, 2, 4, 8 Theorem.
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Chapter 0

Historical Background

The theory of composition of quadratic forms over fields had its start in the 19th
century with the search for n-square identities of the type

CE4+x3+ - 4xD) Ol +ye 4+ 4y =+ B+ + 2
1 2

where X = (x1,x2,...,xp) and Y = (y1, y2, ..., yn) are systems of indeterminates
and each zx = zx(X, Y) is a bilinear form in X and Y. For example when n = 2 there
is the ancient identity

(ﬁ+ﬂb-wf+ﬁ)=Qwh+mnf+%mn—an?

In this example z; = x1y; + x2y2 and z2 = x1y2 — x2y; are bilinear forms in X, Y
with integer coefficients. This formula for n = 2 can be interpreted as the “law of
moduli” for complex numbers: |«|-|B| = |¢B| where ¢ = x; —ixz and B = y; +iys.

A similar 4-square identity was found by Euler (1748) in his attempt to prove
Fermat’s conjecture that every positive integer is a sum of four integer squares. This
identity is often attributed to Lagrange, who used it (1770) in his proof of that conjec-
ture of Fermat. Here is Euler’s formula, in our notation:

ClI+x3+x3+x) O+ +yi+yD =24+ +24+2

where
21 = x1y1 +x2Y2 + X3Y3 + X4Y4

22 = X1y2 — X2)1 + X3Y4 — X4)3
23 = X1Y3 — X2Y4 — X3Y1 + X4)2

24 = X1Y4 + X2Y3 — X3Y2 — X4)1.

After Hamilton’s discovery of the quaternions (1843) this 4-square formula was
interpreted as the law of moduli for quaternions. Hamilton’s discovery came only
after he spent years searching for a way to multiply “triplets” (i.e. triples of numbers)
so that the law of moduli holds. Such a product would yield a 3-square identity.
Already in his Théorie des Nombres (1830), Legendre showed the impossibility of
such an identity. He noted that 3 and 21 can be expressed as sums of three squares of
rational numbers, but that 3 x 21 = 63 cannot be represented in this way. It follows
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that a 3-square identity is impossible (at least when the bilinear forms have rational
coefficients). If Hamilton had known of this remark by Legendre he might have given
up the search to multiply triplets! Hamilton’s great insight was to move on to four
dimensions and to allow a non-commutative multiplication.

Hamilton wrote to John Graves about the discovery of quaternions in October 1843
and within two months Graves wrote to Hamilton about his discovery of an algebra
of “octaves” having 8 basis elements. The multiplication satisfies the law of moduli,
but is neither commutative nor associative. Graves published his discovery in 1848,
but Cayley independently discovered this algebra and published his results in 1845.
Many authors refer to elements of this algebra as “Cayley numbers”. In this book we
use the term “octonions”.

The multiplication of octonions provides an 8-square identity. Such an identity
had already been found in 1818 by Degen in Russia, but his work was not widely
read. After the 1840s a number of authors attempted to find 16-square identities with
little success. It was soon realized that no 16-square identity with integral coefficients
is possible, but the arguments at the time were incomplete. These “proofs” were
combinatorial in nature, attempting to insert + and — signs in the entries of a 16 x 16
Latin square to make the rows orthogonal.

In 1898 Hurwitz published the definitive paper on these identities. He proved that
there exists an n-square identity with complex coefficients if and only if n = 1, 2, 4 or
8. His proof involves elementary linear algebra, but these uses of matrices and linear
independence were not widely known in 1898. At the end of that paper Hurwitz posed
the general problem: For which positive integers r, s, n does there exist a “composition
formula™:

0 SN )G R SRR g S SRS

where X = (x1,x2,...,x,)and Y = (y1, 2, ..., ys) are systems of indeterminates
and each z; = zx(X, Y) is a bilinear form in X and Y?

Here is an outline of Hurwitz’s ideas, given without all the details. Suppose there is
a composition formula of size [r, s, n] as above. View X, Y and Z as column vectors.
Then, for example, z% + z% 4+ z,zl = Z . Z, where the superscript T denotes the
transpose. The bilinearity condition becomes Z = AY where A is an n X s matrix
whose entries are linear forms in X. The given composition formula can then be
written as

W 4xi4 41y y=2".Z=YTATAY.

Since Y consists of indeterminates this equation is equivalent to

AT A=l +x3+ -+ 1D,

where A is an n x s matrix whose entries are linear forms in X.
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Of course I; here denotes the s x s identity matrix. Since the entries of A are linear
forms we can express A = x1A; + x2A2 + --- + x, A, where each A; isann x s
matrix with constant entries. After substituting this expression into the equation and
canceling like terms, we find:

There are n x s matrices A1, Az, ..., A, over F satisfying
A,T-A,-=Is forl <i<r,

Al A;+ Al -A;=0 forl<i j<randi#j.

This system is known as the “Hurwitz Matrix Equations”. Such matrices exist if and
only if there is a composition formula of size [r, s, n].

Hurwitz considered these matrices to have complex entries, but his ideas work just
as well using any field of coefficients, provided that the characteristic is not 2. Those
matrices are square when s = n. In that special case the system of equations can be
greatly simplified by defining the n x n matrices B; = AI_IA,- for1 <i <r. Then
By, ..., B, satisfy the Hurwitz Matrix Equations and B; = I,,. It follows that:

There are n x n matrices By, ..., B, over F satisfying:

T _
B; =-B;,

Bi2 =—1I,,
BiBj = —B;B; whenever i # j.

for2<i<r;

Such a system of n x n matrices exists if and only if there is a composition formula
of size [r, n, n]. Hurwitz proved that the 2" —2 matrices B\ B;,...Bj, for2 < i) <
-+ < iy <r —1 are linearly independent. This shows that 2" =2 < 2 and in the case
of n-square identities (when r = n) quickly leads to the “1, 2, 4, 8 Theorem”.

In 1922 Radon determined the exact conditions on r and n for such a system of
matrices to exist over the real field R. This condition had been found independently
by Hurwitz for formulas over the complex field C and was published posthumously
in 1923. They proved that:

A formula of size [r, n, n] exists if and only if r < p(n),

where the “Hurwitz—Radon function” p(n) is defined as follows: if n = 2%tbp,
where ngisoddand 0 < b < 3, then p(n) = 8a+2°. There are several different ways



4 0. Historical Background

this function can be described. The following one is the most convenient for our
purposes:

2m+1 ifm=0,
2m ifm=1,
2m ifm=2,
2m+2 ifm=3

If n = 2™ng where ng is odd then p(n) = (mod 4).

For example, p(n) = n if and only if n = 1,2,4 or 8, as expected from the
earlier theorem of Hurwitz. Also p(16) =9, p(32) = 10, p(64) = 12 and generally
p(16n) = 8+ p(n). New proofs of the Hurwitz—Radon Theorem for compositions of
size [r, n, n] were found in the 1940s. Eckmann (1943b) applied the representation
theory of certain finite groups to prove the theorem over R, and Lee (1948) modi-
fied Eckmann’s ideas to prove the result using representations of Clifford algebras.
Independently, Albert (1942a) generalized the 1, 2, 4, 8 Theorem to quadratic forms
over arbitrary fields, and Dubisch (1946) used Clifford algebras to prove the Hurwitz—
Radon Theorem for quadratic forms over R (allowing indefinite forms). Motivated
by a problem in geometry, Wong (1961) analyzed the Hurwitz—Radon Theorem using
matrix methods and classified the types of solutions over R. In the 1970s Shapiro
proved the Hurwitz—Radon Theorem for arbitrary (regular) quadratic forms over any
field where 2 # 0, and investigated the quadratic forms which admit compositions.
One goal of our presentation is to explain the curious periodicity property of the
Hurwitz—Radon function p(n):

Why does p(2™) depend only on m (mod 4)?

The explanation comes from the shifting properties of (s, ¢)-families as explained in
Chapter 2.

Here are some of the questions which have motivated much of the work done in
Part I of this book. Suppose o and g are regular quadratic forms over the field F,
where dimo = s and dim g = n. Then o and ¢ “admit a composition” if there is a
formula

o(X)q(Y) =q(2),

where as usual X = (x1,x2,...,x5) and Y = (y1, y2, ..., yn) are systems of inde-
terminates and each zj is a bilinear form in X and Y, with coefficients in F. The
quadratic forms involved in these compositions are related to Pfister forms.

In the 1960s Pfister found that for every m there do exist 2™-square identities,
provided some denominators are allowed. He generalized these identities to a wider
class: a quadratic form is a Pfister form if it expressible as a tensor product of binary
quadratic forms of the type (1,a). In particular its dimension is 2" for some m.
Here we use the notation (ay, ..., a,) to stand for the n-dimensional quadratic form
alx% +--+ anx,zl.
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Theorem (Pfister). If ¢ is a Pfister form and X, Y are systems of indeterminates, then
there is a multiplication formula

P(X)e(Y) = ¢(2),

where each component zx = zx(X,Y) is a linear form in Y with coefficients in the
rational function field F (X). Conversely if ¢ is an anisotropic quadratic form over F
satisfying such a multiplication formula, then ¢ must be a Pfister form.

The theory of Pfister forms is described in the textbooks by Lam (1973) and
Scharlau (1985). When dim¢ = 1, 2,4 or 8, such a multiplication formula exists
using no denominators, since the Pfister forms of those sizes are exactly the norm
forms of composition algebras. But if dim ¢ = 2™ > 8, Hurwitz’s theorem implies
that any such formula must involve denominators. Examples of such formulas can be
written out explicitly (see Exercise 5).

The quadratic forms appearing in the Hurwitz—Radon composition formulas have
a close relationship to Pfister forms. For any Pfister form ¢ of dimension 2™ there
is an explicit construction showing that ¢ admits a composition with some form o
having the maximal dimension p(2™). The converse is an interesting open question.

Pfister Factor Conjecture. Suppose g is a quadratic form of dimension 2™, and ¢
admits a composition with some form of the maximal dimension p(2™). Then g is a
scalar multiple of a Pfister form.

This conjecture is one of the central themes driving the topics chosen for the first
part of the book. In Chapter 9 it is proved true when m < 5, and for larger values of
m over special classes of fields.

The second part of this book focuses on the more general compositions of size
[r,s,n]. In 1898 Hurwitz already posed the question: Which sizes are possible?
The cases where s = n were settled by Hurwitz and Radon in the 1920s. Further
progress was made around 1940 when Stiefel and Hopf applied techniques of algebraic
topology to the problem, (for compositions over the field of real numbers). InPart Il we
discuss these topological arguments and their generalizations, as well as considering
the question for more general fields of coefficients. Further details are described in
the Introduction to Part II.

Exercises for Chapter 0

Note: For the exercises in this book, most of the declarative statements are to be
proved. This avoids writing “prove that” in every problem.

1. In any (bilinear) 4-square identity, if z; = x1y1 + x2y2 + x3y3 + x4y4 then z2, z3,
74 must be skew-symmetric. (Compare 4-square identity of Euler above.)



