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TO CAROLYN



PREFACE TO THE SECOND EDITION

This second edition of Mathematical Methods for Physicists incorporates a
number of changes, additions, and improvements made on the basis of experience
with the first edition and the helpful suggestions of a number of people. Major
revisions have been made in the sections on complex variables, Dirac delta func-
tion, and Green’s functions. New sections have been included on oblique co-
ordinates, Fourier-Bessel series, and angular momentum ladder operators. The
major addition is a series of sections on group theory. While these could have
been presented as a separate group theory chapter, there seemed to be several
advantages to include them in Chapter 4, Matrices. Since the group theory is
developed in terms of matrices the arrangement seems a reasonable one.
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PREFACE TO THE FIRST EDITION

Mathematical Methods for Physicists is based upon two courses in mathematics
for physicists given by the author over the past eighteen years, one at the junior
level and one at the beginning graduate level. This book is intended to provide
the student with the mathematics he needs for advanced undergraduate and
beginning graduate study in physical science and to develop a strong background
for those who will continue into the mathematics of advanced theoretical physics.
A mastery of calculus and a willingness to build on this mathematical foundation
are assumed.

This text has been organized with two basic principles in view. First, it has been
written in a form that it is hoped will encourage independent study. There are
frequent cross references but no fixed, rigid page-by-page or chapter-by-chapter
sequence is demanded.

The reader will see that mathematics as a language is beautiful and elegant.
Unfortunately, elegance all too often means elegance for the expert and obscurity
for the beginner. While still attempting to point out the intrinsic beauty of mathe-
matics, elegance has occasionally been reluctantly but deliberately sacrificed in
the hope of achieving greater flexibility and greater clarity for the student.

Mathematical rigor has been treated in a similar spirit. It is not stressed to the
point of becoming a mental block to the use of mathematics. Limitations are
explained, however, and warnings given against blind, uncomprehending appli-
cation of mathematical relations.

The second basic principle has been to emphasize and re-emphasize physical
examples in the text and in the exercises to help motivate the student, to illustrate
the relevance of mathematics to his science and engineering.

This principle has also played a decisive role in the selection and development
of material. The subject of differential equations, for example, is no longer a
series of trick solutions of abstract, relatively meaningless puzzles but the solu-
tions and general properties of the differential equations the student will most
frequently encounter in a description of our real physical world.
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INTRODUCTION

Many of the physical examples used to illustrate the applications of mathe-
matics are taken from the fields of electromagnetic theory and quantum mechanics.
For convenience the main equations are listed below and the symbols identified.
References in these fields are also given.

Electromagnetic theory

MAXWELL’S EQUATIONS (MKS UNITS—VACUUM)

B

V:D= —

p VxE r
V:-B=0 VxH=aa—]3+J

Here E js the electric field defined in terms of force on a static charge and B the
magnetic induction defined in terms of force on a moving charge. The related
fields D and H are given (in vacuum) by

D=¢E and B=yuH

The quantity p represents free charge density while J is the corresponding current.
For additional details see: J. M. Marion, Classical Electromagnetic Radiation,
New York: Academic Press (1965); W. K. H. Panofsky and M. Phillips, Classical
Electricity and Magnetism, Reading, Mass.: Addison-Wesley (1955); J. D. Jackson,
Classical Electrodynamics, New York: Wiley (1962).

Note that Marion and Jackson prefer Gaussian units. A glance at the last two
texts and the great demands they make upon the student’s mathematical com-
petence should provide considerable motivation for the study of this book.
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XX INTRODUCTION

Quantum Mechanics

SCHRODINGER WAVE EQUATION (TIME INDEPENDENT)

i \'& E

m Y+ vy =Ey
Y is the (unknown) wave function. The potential energy, often a function of
position, is denoted by ¥ while E is the total energy of the system. The mass
of the particle being described by Y is m. A is Planck’s constant 4 divided by 27.
Among the extremely large number of beginning or intermediate texts we might
note: A. Messiah, Quantum Mechanics (2 vols), New York; Wiley (1961): R. H.
Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Reading Mass.:
Addison-Wesley (1960); E. Merzbacher, Quantum Mechanics (Second Edition),
New York: Wiley (1970).
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