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Preface

This book provides a solid foundation for time series analysis and prediction theory.
The need for a foundation is manifested by the maturity, widespread use and truly
interdisciplinary nature of time series analysis lying at the intersection of the math-
ematical, statistical, computational, physical, engineering and system sciences. The
goal is to join the two lines of developments in time series analysis centered around
the work of Schuster, Yule, Slutsky, Wold, ..., and prediction theory based on the
work of Szegs, Wold, Cramer, Kolmogorov, Wiener, . .. into a logically sound and
pedagogically reasonable theory of modern statistical time series analysis.

We use the language of regression (projection) and the Hilbert space which is
powerful, natural, intuitive, spoken widely, and hence capable of facilitating interac-
tions, interdisciplinary efforts to problem solving and communicating results among
researchers from diverse and growing fields where time series problems may arise.
There is great need for a book emphasizing the fundamental results and structural
underpinnings of stationary processes to explain, extend and unify in a mathemati-
cally coherent manner the diverse and useful developments of the last few decades.
Special effort is made to motivate, present and prove the results on the structure and
prediction of stationary processes in the time-domain using the celebrated Wold de-
composition. Statistical methods and concepts, however, are mostly motivated using
autoregressive (AR) models. In addition due emphasis is given to the spectral-domain
results, data analysis and computational issues so as to entice the reader to pursue
these areas further.

Our approach does not compete with but rather complements those pursued by
Hannan (1970), Anderson (1971), Hannan and Deistler (1988), Brockwell and Davis
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viii PREFACE

(1991) and Fuller (1996), in that we do not present the proofs of consistency and
asymptotic normality of the sample covariances, the maximum likelihood estimators
of the ARMA parameters and the spectral density estimators. Such classical results,
though extremely important, are well established. Instead, we emphasize the mathe-
matical/probabilistic, statistical/data analytic and computational concepts along with
some novel and useful results from the research papers that have not appeared in
books yet. Proofs of some of these mathematical/probabilistic results are lengthy and
tedious or may require advanced background in probability, harmonic and functional
analysis. In such cases, we merely motivate, state the results, sketch the proofs and
highlight their applications. The books by Robinson (1954), Lambert and Poskitt
(1983) and Pollock (1999) are relevant to the topic of developing foundations for
time series analysis and prediction theory.

This book is suitable for researchers and advanced students in probability and
statistics, mathematics, engineering and system sciences, physical and natural sci-
ences, economics and social sciences who are interested in the deeper aspects of time
series analysis. Familiarity with probability and statistics at the level of Casella and
Berger’s (1990) Statistical Inference and knowledge of linear algebra and Hilbert
spaces are helpful. Advanced topics including those on Hilbert spaces are used and
developed gradually in later chapters as needed. With a careful selection of topics
and appropriate supplementation if necessary, the book can be used as a graduate text
for either a one- or a two-semester course on time series analysis (Chapters 2—5) and
(second-order) stochastic processes (Chapters 5-10). The problems at the end of each
chapter and the indicated projects in Chapters 24 are useful for gaining skill, deeper
appreciation of the covered topics and indicating possible directions of extending the
methodology and the theory. However, the book does not attempt to be a traditional
manual for time series data analysis and forecasting.

According to the mathematics/statistics level, the book can be divided loosely into
three parts comprising of Chapters 1-4, 5-8 and 9-10. At the expense of some dupli-
cation, the topics are arranged so that each part can be studied virtually independently
of the others. The first part is statistical and covers most ingredients needed for time
series data analysis. The second part is probabilistic and develops structural results
on stationary processes. Finally, the third part is more mathematical reviewing some
background material on Hilbert spaces and function theory and providing proofs of
deeper results such as the spectral representation and the Szeg6-Kolmogorov predic-
tion theorems. Some of these topics are of independent interest to statisticians due
to their widespread use in modern statistics; see Wahba (1990), Small and McLeish
(1994) and Vidakovic (1999).

The scope of the subject is wide and the topics covered reflect my interests and
the need to control the length of the book. Topics not covered here have received
book-length coverage in other sources. Some examples are nonlinear models (Tong,
1990), nonstationary models (Priestley, 1988), long-memory models (Beran, 1994),
random fields (Rosenblatt, 1985; Yaglom, 1986), Bayesian models (West and Har-
rison, 1997), continuous-time processes (Dym and McKean, 1976) and multivariate
processes (Rozanov, 1967; Hannan and Deistler, 1988). A broad theory of statistical
inference for these diverse cases is provided by Taniguchi and Kakizawa (2000). My
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hope is that the present book will prepare and motivate the reader for further study
and research in these diverse areas centered around the concept of stationarity.

Some of the datasets used in this book are available via my website
http://www.math.niu.edu/“pourahm/book/ atNorthern Illinois Univer-
sity. The computations and graphics are done in Splus (MathSoft Inc.). The datasets
and the sample programs can also be obtained from the author at the address be-
low. Please feel free to let me know of your questions, comments and constructive
criticism.

March 20, 2001 Mohsen Pourahmadi
Division of Statistics
Northern Illinois University
DeKalb, Illinois, 60115 USA
email: pourahm @math.niu.edu
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Introduction

Unlike classical statistics, time series analysis is concerned with statistical inference
from data that are not necessarily independent and identically distributed (i.i.d.). The
ideal framework for time series analysis is stationarity whereas the data encountered
in practice are often nonstationary for a variety of reasons. Thus, the challenges
facing a time series analyst are to transform the data to stationarity first, and then
transform stationary data into an i.i.d. sequence. Some unique features of time series
analysis and this book in dealing with these two challenges are described briefly in
this chapter.

1.1 NONSTATIONARY DATA AND ORTHOGONALIZATION

A discrete-time stochastic process { X} representing the evolution of a system over
time could be nonstationary because either its mean (level) or its dependence as gauged
by the covariance between two measurements is a function of time. For a given time
series data, separating or distinguishing these two aspects of nonstationarity known as
mean-nonstationarity and covariance-nonstationarity, respectively, is a difficult task.
Traditionally, however, much attention is paid to correcting the mean nonstationarity
by relying on simple transformations such as logarithm, differencing and smoothing.
These transformations and others from the familiar and popular area of regression
analysis are reviewed and illustrated in the early parts of Chapters 2 and 3.
Unfortunately, no simple statistical methodology like regression is known for deal-
ing with covariance-nonstationarity. In addition, the presence of dependence in the
data, whether of stationary or nonstationary kind, is problematic for someone who is



