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PREFACE

This book is a considerable expansion of lectures I gave at the School of
Mathematical and Physical Sciences, University of Sussex during the
winter term of 1986. The audience included postgraduate students and
faculty members working in particle physics, condensed matter physics
and general relativity. The lectures were quite informal and I have tried
to keep this informality as much as possible in this book. The proof of a
theorem is given only when it is instructive and not very technical;
otherwise examples will make the theorem plausible. Many figures will
help the reader to obtain concrete images of the subjects.

In spite of the extensive use of the concepts of topology, differential
geometry and other areas of contemporary mathematics in recent
developments in theoretical physics, it is rather difficult to find a
self-contained book that is easily accessible to postgraduate students in
physics. This book is meant to fill the gap between highly advanced
books or research papers and the many excellent introductory books. As
a reader, I imagined a first-year postgraduate student in theoretical
physics who has some familiarity with quantum field theory and relativ-
ity. In this book, the reader will find many examples from physics, in
which topological and geometrical notions are very important. These
examples are eclectic collections from particle physics, general relativity
and condensed matter physics. Readers should feel free to skip exam-
ples that are out of their direct concern. However, I believe these
examples should be the theoretical minima to students in theoretical
physics. Mathematicians who are interested in the application of their
discipline to theoretical physics will also find this book interesting.

The book is largely divided into four parts. Chapters 1 and 2 deal with
the preliminary concepts in physics and mathematics respectively. In
Chapter 1, a brief summary of the physics treated in this book is given.
The subjects covered are path integrals, gauge theories (including
monopoles and instantons), defects in condensed matter physics, general
relativity, Berry’s phase in quantum mechanics and strings. Most of the
subjects are subsequently explained in detail from the topological and
geometrical viewpoints. Chapter 2 supplements the undergraduate
mathematics that the average physicist has studied. If readers are quite
familiar with sets, maps and general topology, they may skip this
chapter and proceed to the next.

Chapters 3 to 8 are devoted to the basics of algebraic topology and
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differential geometry. In Chapters 3 and 4, the idea of the classification
of spaces with homology groups and homotopy groups is introduced. In
Chapter 5, we define a manifold, which is one of the central concepts in
modern theoretical physics. Differential forms defined there play very
important roles throughout this book. Differential forms allow us to
define the dual of the homology group called the de Rham cohomology
group in Chapter 6. Chapter 7 deals with a manifold endowed with a
metric. With the metric, we may define such geometrical concepts as
connection, covariant derivative, curvature, torsion and many more. In
Chapter 8, a complex manifold is defined as a special manifold on which
there exists a natural complex structure.

Chapters 9 to 12 are devoted to the unification of topology and
geometry. In Chapter 9, we define a fibre bundle and show that this is a
natural setting for many physical phenomena. The connection defined in
Chapter 7 is naturally generalised to that on fibre bundles in Chapter 10.
Characteristic classes defined in Chapter 11 enable us to classify fibre
bundles using various cohomology classes. Characteristic classes are
particularly important in the Atiyah-Singer index theorem in
Chapter 12. We do not prove this, one of the most important theorems
in contemporary mathematics, but simply write down the special forms
of the theorem so that we may use them in practical applications in
physics.

Chapters 13 and 14 are devoted to the most fascinating applications of
topology and geometry in contemporary physics. In Chapter 13, we
apply the theory of fibre bundles, characteristic classes and index
theorems to the study of anomalies in gauge theories. In Chapter 14,
Polyakov’s bosonic string theory is analysed from the geometrical point
of view. We give an explicit computation of the one-loop amplitude.

I would like to express deep gratitude to my teachers, friends and
students. Special thanks are due to Tetsuya Asai, David Bailin, Hiroshi
Khono, David Lancaster, Sigeki Matsutani, Hiroyuki Nagashima, David
Pattarini, Felix E A Pirani, Kenichi Tamano, David Waxman and David
Wong. The basic concepts in Chapter 5 owe very much to the lectures
by F E A Pirani at King’s College, University of London. The
evaluation of the string Laplacian in Chapter 14 using the Eisenstein
series and the Kronecker limiting formula was suggested by T Asai. I
would like to thank Euan Squires, David Bailin and Hiroshi Khono for
useful comments and suggestions. David Bailin suggested that I should
write this book. He also advised Professor Douglas F Brewer to include
this book is his series. I would like to thank the Science and Engineer-
ing Research Council of the United Kingdom, which made my stay at
Sussex possible. It is a pity that I have no secretary to thank for the
beautiful typing. Word processing has been carried out by myself on two
NEC PC9801 computers. Jim A Revill of Adam Hilger helped me in
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many ways while preparing the manuscript. His indulgence over my
failure to meet deadlines is also acknowledged. Many musicians have
filled my office with beautiful music during the preparation of the
manuscript: I am grateful to J S Bach, Ryuichi Sakamoto, Ravi Shankar
and Erik Satie. Finally I am greatly indebted to my wife Yoko, to whom
this book is dedicated, for her encouragement and moral support.

Mikio Nakahara
Shizuoka, February 1989
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BACKGROUND IN PHYSICS

We assume that the reader is familiar with elementary quantum field
theory and elementary relativity. In the present chapter, we outline the
physics which we shall be concerned with in this book. This chapter is
intended to establish notations and conventions and also to give enough
background of selected topics with which many students may not be
very familiar. Most of the topics are subsequently analysed in detail
from topological and geometrical viewpoints.

We put ¢ (the speed of light) = # (Planck’s constant/27) = k (Boltz-
mann’s constant) = 1, unless written explicitly. We employ the Einstein
summation convention: if the same index appears twice, once as a
superscript and once as a subscript, then the index is summed over all
possible values. For example, if u runs from 1 to m, we have

m
A"B, = Y A"B,.
u=1
The Euclidean metric is g,, = 6,, = diag(+1, .. ., +1) while the Min-
kowski metric is g,, = 1,, = diag(—1, +1, ..., +1).

N, Z, R and C denote the sets of natural numbers, integers, real
numbers and complex numbers, respectively. [ denotes the set of
quaternions. Let (1,i,j,k) be a basis such that ij= —ji=k,
jk=—-kj=iki=—-i-k=j, i*=j"=k?*=—1. Then

M = {a + ib + jc + kd|a, b, ¢, d € R}.

Note that i, j and k have the 2 X 2 matrix representations, i = io;,
Jj =10,, k = ioy, where the o, are the Pauli spin matrices

0 1 0 —i 1 0
1= 0 %2 = | 0 =l -1/

The symbol M denotes the end of a proof.

1.1 Path integral and quantum field theories

Quantum field theory (oFT) has achieved great success in particle
physics as well as in condensed matter physics. We cannot find any
evidence against QFt when applied to metals, superconductors, super-
fluids, quantum electrodynamics (QED), quantum chromodynamics



2 BACKGROUND IN PHYSICS

(ocp), electroweak theory and grand unified theories (Guts). So far we
have not established a QFt for gravity. Superstring theory seems to be a
good candidate for the Theory of Everything (TOE), including gravity.
Although superstring theory deals with one-dimensional objects rather
than particles, the basic tool to describe it is orFr. We start our
exposition with a short review of the standard oFT in the path integral
formalism. Relevant references are Bailin and Love (1986), Cheng and
Li (1984) and Ramond (1981). Huang (1982) and Ryder (1985) contain
a good introduction to topological methods in oFT. Federbush (1987) is
a survey of QFT written by a mathematician.

1.1.1 Path integral formulation of quantum mechanics

Let § be a position operator in the Schrodinger picture and let |g) be
its eigenvector with eigenvalue g:

dlg) = qlq). (1.1)

g is independent of time and so is the eigenvector |g). A state |y(¢))
satisfies the Schrodinger equation

i< ly(0) = Hlu(o) (12)

whose formal solution is |y(t)) = exp(—iHt)|y(0)). If the coordinate is
diagonalised, the state is represented as

Y(q, 1) = (q|y()). (1.3)

Let §(¢) be a position operator in the Heisenberg picture and let
|q, t) be an instantaneous eigenvector of §(t):

glq, t) = qlq, t). (1.4)

Since §(t) depends on time, |g, t) may not be an eigenvector of §(t')
for t' # t. The dynamics of §(¢) is dictated by the Heisenberg equation
of motion, with the formal solution

C/]\(I) == eiHrZI\e*iHl (1.5)
from which we find

g, 1) = e™lq). (1.6)

The wavefunction is y(q, t) = (q, t|y).

Let us consider a process in which a particle starting at g at time ¢ is
found at ¢’ at later time ¢'. By the fundamental assumption of quantum
mechanics, the probability amplitude associated with this process is

(q', t'lg, t) = (q'le""""|q). (1.7)
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We show that this amplitude is evaluated by summing over all possible
paths that connect (g, t) and (q’, t'). Inserting the identity

fo

g, t){q. t| =1

into (1.7), we have

(q'.t]q, 1)

= f dqy ... dq, {q', U'lgum t.) - - - (g2, talq1, 11){q1, tilg, 1)
(1.8)

where we have divided the interval " — ¢ into n + 1 pieces,
iy — L =€ ty =1t bty =t (1.9)

Each inner product is

(@ivrs tinalqi t1) = (qinile™1q:) = (qinilgi) — ieqin|H|q;). (1.10)
Suppose the Hamiltonian is of the form

H = p*2m + V(§). (1.11)
Noting that (g;,lg;) = 6(qi+1 — q;) and {g,|p;) = e, we find

A A A qi & qi
(qici|HP . Dlg:) = (qi1lp*2m|q;) + V(#ﬂ) 8(giv1 — q1)

J'dp H( zq’“) i(qi-1—a)p (1.12)

where use has been made of the completeness

dp
— |p, t Lt = 1.
| 32 1p. 0¥p. d
Substituting this result into (1.10), we have

1 — isH(p, _q"_+zg_’i_‘-)]ei(q.uq,)p

d
(Gis1s tinlgi 1) zj 2[)
T

dp . it q
= [ L evtara eXp[—ieH(p, i—zL)] (1.13)

This becomes exact when £ — 0, that is when n — oc. The amplitude
(1.8) is now given by

- . dp dp,
<q-f|q,t>:},g13cf—°-.. qul---dq,,

exp{leE[ —C]’~*—‘_—qi— H(p,-,q"—Jrzqﬂ)]}. (1.14)

i=0
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This is symbolically written as

f//)p o exp(i J:[' dt [pg — H(p, q)] (1.15)

which is called the path integral for the transition amplitude. It is clear
from this construction that we have summed over all paths satisfying the
boundary condition.

Example 1.1 Consider a free particle with H = p?/2m. (1.14) is

r'q, 1) —hmfl_[ fqu,eXP Z(p(q,ﬂ q)—ep—')]

i=0 2m

(q',

To integrate over g, we rewrite the exponent as
n piz
im12m’

g-integrations yield an infinite product of é-functions

@2m)" l:[] o(pi = pi-1)

which states that the momentum is conserved at each stage of the
evolution. The amplitude becomes

(lg. 1) = | %exp[i(mq —q)—’i‘u ,))]_ (1.16)

To evaluate this amplitude, we note the formula

—poq + puq’ + 21%'(171'—1 —pi)— €

(q',

T dp : _ 1 (b_z)
fiw o exp(—ap bp) = (ama) " expl (a > 0). (1.17)

We uncritically think that i(¢/ — £)/2m is a positive real number. (We
may introduce a new variable t=ir (Wick rotation) so that
(' — 7)/2m > 0.) We finally have

t'lq, 1) = (ﬁt’f—_j)mexp(imz—(g:__—g)z). (1.18)

(q'.

When the kinetic energy is of the form (1.11), we may execute
p-integrations in (1.14). If we Wick rotate the time so that t = it and
replace i€ by €, we have

J’%ex (i (Gii — ) — Ep,-z) — (ﬂ)mex (m(qi+l - qi)z)
277_ p p: ‘1,+| C]: 2m 2778 p —28

where use has been made of (1.17). Now the amplitude is given in terms
of g-integrations only,




