Klaus Engel
Markus Hadwiger
Joe M. Kniss
Christof Rezk-Salama
Daniel Weiskopf

Real-Time Volume Graphics

Klaus Engel
Markus Hadwiger

Joe M. Kniss
Christof Rezk-Salama
Daniel Weiskopf
T
”"{": .
fq_; -\
t‘ , /,’" ;
N 4P - f
\’ ((E% /
N

A K Peters, Ltd.
Wellesley, Massachusetts

E2010002356

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright © 2006 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Real-time volume graphics / Klaus Engel ... [et al.].
p. cm.
Includes bibliographical references and index.
ISBN 13: 978-1-56881-266-3 (alk. paper)
ISBN 10: 1-56881-266-3 (alk. paper)
1. Computer graphics. 2. Three-dimensional display systems. 1. Engel,
Klaus, 1969-

T385.R43414 2006
006.6’93-dc22
2006041662

Printed in India
10 09 08 07 06 10987654321

- AT e, e S

Real-Time Volume Graphics

Far Monika
—Klaus Engel

For Pilar
—Markus Hadwiger

ToK. P
—]Joe M. Kniss

For Malak and Helene
—Christof Rezk-Salama

Far Bettina
—Daniel Weiskopf

Preface

N TRADITIONAL COMPUTER GRAPHICS, 3D objects are created using high-
level surface representations such as polygonal meshes, NURBS (nonuni-
form rational B-spline) patches, or subdivision surfaces. Using this model-
ing paradigm, visual properties of surfaces, such as color, roughness, and
reflectance, are described by means of a shading algorithm, which might
be as simple as the Lambertian diffuse reflection model or as complex as
a fully-featured shift-variant anisotropic BRDF.! Because light transport
is evaluated only at points on the surface, these methods usually lack the
ability to account for light interaction that takes place in the atmosphere
or in the interior of an object.

Compared with surface rendering, volume rendering describes a wide
range of techniques for generating images from 3D scalar data, These
techniques are originally motivated by scientific visualization, where vol-
ume data is acquired by measurement or generated by numerical simula-
tion. Typical examples are medical data of the interior of the human body
obtained by computerized tomography (CT) or magnetic resonance imag-
ing (MRI). Other examples are data from computational fluid dynamics
(CFD), geological and seismic data, and abstract mathematical data such
as the 3D probability distribution of a random number, implicit surfaces,
or any other 3D scalar function.

It did not take long for volume-rendering techniques to find their way
into visual arts. Artists were impressed by the expressiveness and beauty of
the resulting images. With the evolution of efficient rendering techniques,
volume data is also becoming more and more important for applications in
computer games. Volumetric models are ideal for describing fuzzy objects,
such as fluids, gases, and natural phenomena like clouds, fog, and fire.

IBRDF = bidirectional reflection distribution function: a function used to describe
complex optical material properties.

Xi

Xii Preface
Many artists and researchers have generated volume data synthetically to
supplement their traditional surface models. They have found that volume-
rendering techniques are useful for producing a large variety of impressive
visual effects.

Although, at first glance, volumetric data sets seem to be more difficult
to visualize than surfaces, it is both worthwhile and rewarding to render
them as truly 3D entities without falling back to 2D subsets. Efficient ren-
dering techniques that generate high-quality images of volumetric objects
including local and global illumination effects in real time, or at least at
interactive frame rates, are the topic of this book.

Intended Audience

This book is intended for two groups of readers. The first group com-
prises members of the scientific community, such as computer scientists,
engineers, physicists, and medical imaging professionals. The other group
comprises game developers, visual artists and animators, technical direc-
tors, and all people that are concerned with the development of multimedia
and visual-entertainment applications. For scientists, the clarity and the
accuracy of the visual representation of their data is essential. The enter-
tainment community will focus more on artistic merits and creative aspects
such as aesthetics, expressiveness, and everything that helps them commu-
nicate with the audience and tell their story. Both groups will find that
interactivity is essential.

Although most of the topics covered in this book deal with the program-
ming of computer-graphics applications, the book is not solely intended for
software developers or computer scientists. Content creators and visual
artists, whose primary concern is usually not software development, will
find out that volume graphics is not as difficult to realize as they might
think. They will learn expressive and powerful techniques for creating vi-
sual effects that are hard to realize with traditional surface modeling. From
our experience with various application areas, we know that there are also
many people from scientific disciplines who need customized methods for
visualizing their scientific data. They often find themselves writing pro-
grams to visually display their abstract data without really having a pool
of working methods that they can build upon. For those people, this book
will provide effective solutions, important concepts, and ideas for tailoring
their applications to their specific needs.

How to Read This Book

From the didactic point of view, the best way to read this book is from
cover to cover. Having said that, we encourage you to browse through

Preface xiii

the book and start reading wherever a passage or a figure catches your
attention. As we know, many readers prefer to skip parts of the text and
jump back and forth through the different chapters. In this section, we
want to give you some hints about what you will find in which parts of the
book and which chapters are built upon other chapters.

The first two chapters cover the basic prerequisites for the rest of the
book. Chapter 1 explains the physical basics of light transport and lays
the theoretical groundwork for later chapters. If you already feel familiar
with optics and light transfer, or if you are more interested in practical
implementation than theory, you can skip this chapter for now and return
to it later. Chapter 2 gives an overview of programmable graphics hardware
and its most important features. We assume that you are already familiar
with graphics programming to a certain extent, and this chapter is only
meant as a refresher.

The next few chapters are essential for all readers, regardless of whether
you're interested in scientific visualization, visual arts, or games. Chapter 3
starts with a practical introduction to different approaches to texture-based
volume rendering. After having worked through this chapter, you should
be able to implement your first completely functional volume-rendering
system. Some of the techniques described in this chapter do not even
require programmable graphics hardware, but the algorithms are essential
for the rest of the book. Chapter 4 introduces transfer functions, which are
used to specify the optical properties based on your underlying volumetric
data. You will learn different mechanisms to perform color mapping and
understand their influence on image quality.

With the next two chapters, we increase the level of realism by inte-
grating different aspects of light-matter interaction. Chapter 5 shows how
to adapt popular local illumination techniques to volumetric data. This is
important for applications both in science and entertainment. Chapter 6
introduces global illumination techniques such as shadows, scattering, and
translucency. These advanced illumination effects are clearly motivated by
visual arts, but scientific applications will also benefit from shadows and
improved realism. '

Although graphics hardware has been designed for object-order ap-
proaches, modern techniques also allow image-order approaches such as
ray casting to be implemented. Chapter 7 explains GPU-based imple-
mentations of ray casting, including optimization techniques such as space
leaping and early ray termination.

The next two chapters cover optimization strategies, which are impor-
tant for all application areas. Chapter 8 analyzes rendering speed and
covers effective techniques to get the maximum performance out of your
graphics board. Chapter 9 provides methods to improve the visual quality
of your images. Different types of visual artifacts and their real causes
are analyzed, and efficient countermeasures are introduced. Chapter 10

Xiv Preface

revisits transfer functions and extends them to multiple dimensions and
multivariate data. User interfaces for intuitive classification and guidance
are demonstrated. These three chapters together are essential for imple-
menting a state-of-the-art volume-rendering system.

Chapter 11 is a guide to volume-rendering techniques for game pro-
grammers. It discusses the value of volume-graphics techniques for games
and compares them to traditional techniques. It explains how to seamlessly
integrate volume graphics into a game engine. The next two chapters fo-
cus on visual arts. Chapter 12 covers practical techniques for generating
volumetric models from scratch using polygonal surfaces and procedural
techniques. Chapter 13 discusses techniques for volumetric deformation
and animation. These techniques can be used to sculpt volumetric models
or to deform measured data. Apart from visual arts, fast deformation tech-
niques are important for scientific applications such as computer-assisted
surgery.

Chapter 14 deals with illustrative volume-rendering techniques and non-
photorealistic rendering. The goal of such approaches is to create contours
and cutaways to convey the important information by amplification through
simplification. The chapter covers approaches such as importance-driven
visualization, focus-and-context techniques, and non-photorealistic shad-
ing, which are mainly important for scientific visualization. Chapter 15
explains a variety of interactive clipping techniques, which facilitate the ex-
ploration of volume data in scientific data analysis. Segmented volume data
is often used in medical scenarios, where certain inner organs or anatom-
ical structures are marked explicitly by different tags. Chapter 16 covers
techniques for integrating segmentation data into our volume-rendering
framework. Finally, with respect to the ongoing trend toward huge data
sets, Chapter 17 introduces effective strategies to overcome memory and
bandwidth limitations for rendering of large volume data.

Graphics Programming

Only a couple of years ago, real-time volume graphics was restricted to ex-
pensive graphics workstations and large rendering clusters. The past couple
of years, however, have seen a breathtaking evolution of consumer graph-
ics hardware from traditional fized-function architectures (up to 1998) to
configurable pipelines to fully programmable floating-point graphics proces-
sors with hundreds of millions of transistors. The first step toward a fully
programmable GPU was the introduction of configurable rasterization and
vertex processing in late 1999. Prominent examples are NVIDIA’s register
combiners and ATT’s fragment shader OpenGL extensions. Unfortunately,
at the time, it was not easy to access these vendor-specific features in a
uniform way.

Preface XV

The major innovation provided by today’s graphics processors is the
introduction of true programmability. This means that user-specified mi-
croprograms can be uploaded to graphics memory and executed directly by
the vertex processor (vertex programs) and the fragment processor (frag-
ment programs).? Vertex and fragment programs consist of assembler-like
instructions from the limited instruction set understood by the graphics
processor (MOV, MAD, LERP, and so on). To spare the user the tedious task
of writing assembler code, high-level shading languages for GPU program-
ming have been introduced. They provide an additional layer of abstraction
and allow access to the capabilities of different graphics chips in an almost
uniform way. Popular examples of high-level shading languages are GLSL,
the shading language introduced with the OpenGL 2.0 specification, and
Cg, introduced by NVIDIA, which is derived from the Stanford Shading
Language. HLSL, the high-level shading language introduced in Microsoft’s
DirectX 9.0 SDK, uses a syntax very similar to Cg.

We believe that code samples are essential for conveying algorithms.
Throughout this book, we provide code samples that concretely illustrate
our rendering algorithms. We have made an effort to keep the samples sim-
ple and easy to understand, and we have taken our choice of programming
languages seriously. Unless stated otherwise, the samples in this book are
written in C/C++ with OpenGL as the graphics API and Cg as the shading
language.

C++ is the most popular programming-language choice of graphics pro-
grammers. There are many introductory textbooks on C++ programming,
including [257]. The reason for choosing OpenGL as the graphics API is
that it is consistently supported on the largest number of different plat-
forms and operating systems. At this point, we assume that you already
have a basic knowledge of graphics programming and OpenCL. If you are
not familiar with OpenGL, we suggest studying the OpenGL Red Book [240]
first. However, we do not expect that readers who are more familiar with
the DirectX APT will have major problems when adapting the code samples.
The reason for choosing Cg as the high-level shading language rather than
OpenCL’s built-in shading language GLSL is that Cg can be used directly
with both OpenGL and DirectX, and the current version of the Cg compiler
is also able to generate GLSL code. The syntax of Cg should be intelligible
to anyone familiar with C/C++, and even a less experienced programmer
should not have major problems understanding the code and adapting the
samples to any high-level shading language. Introductory material and
sample code using Cg can be found on the NVIDIA developer site [34].

2The terms vertez shader and vertex program and also fragment shader and fragment
program have the same meaning, respectively. We usually prefer the term program
because a major part of the code is not related to shading at all.

xvi Preface

Acknowledgments

This book has evolved as a result of several courses and tutorials held at
ACM SIGGRAPH, IEEE Visualization, and Eurographics conferences in
the past couple of years. We are indebted to many people who helped make
it possible in one way or another.

Gordon Kindlmann and Aaron Lefohn have contributed significant
parts to the text and to the original SIGGRAPH course notes. Gordon’s
work on curvature-based classification and Aaron’s ideas on efficient data
structures are essential parts of the book.

This book reflects the collective work of many researchers over several
years and would not exist without the wealth of experience provided to us.
Many of these researches have also supported the writing of this book by
generously providing their material, especially images and data sets. We
would like to thank (in alphabetical order): Dérte Apelt, Anna Vilanova {
Bartroli, Christoph Berger, Stefan Bruckner, Katja Biihler, Min Chen,
Roger Crawfis, Paul Debevec, Helmut Doleisch, Knut E. W. Eberhardt,
David S. Ebert, Laura Fritz, Markus Gross, Stefan Guthe, Peter Hast-
reiter, Jifi Hladuvka, Shoukat Islam, Mark Kilgard, Andrea Kratz, Martin
Kraus, Caroline Langer, Bob Laramee, Torsten Moller, Lukas Mroz, André
Neubauer, Bernhard Preim, Werner Purgathofer, Stefan Rottger, Henning
Scharsach, Christian Sigg, Wolfgang Strafler, Nikolai A. Svakhine, Thomas
Theu$l, Bernd F. Tomandl, Ivan Viola, Manfred Weiler, Riidiger Wester-
mann, and Xiaoru Yuan.

Volume data sets were generously provided by the Digital Morphology
Project at the University of Texas at Austin, the Department of Neu-
roradiology at the University of Erlangen-Nuremberg, the University of
Minnesota at Twin Cities, the University of North Carolina at Chapel
Hill, Siemens Medical Solutions, Stanford University, the Universities of
Tiibingen and Stuttgart (Deutsche Forschungsgesellschaft, SFB 382), Tiani
Medgraph, the United States National Library of Medicine, and the ETH
Ziirich.

Our deep respect is due to Tom Ertl, Giinther Greiner, Meister Eduard
Groller, Charles Hanson, Helwig Hauser, Chris Johnson, and Riidiger West-
ermann. They provided encouragement and valuable feedback throughout
the years. It has been a pleasure working with you.

It is impossible to develop efficient graphics algorithms without the
cooperative work of the hardware manufacturers. We wish to thank ATI
and NVIDIA for their continuous support in knowledge and hardware,
especially Mike Doggett and Mark Segal from ATT and Mark Kilgard, David
Kirk, and Nick Triantos from NVIDIA.

Preface Xvii

Klaus Engel would like to thank everybody at Siemens Corporate Re-
search for their input and support, particularly James Williams, Gianluca
Paladini, Thomas Moller, Daphne Yu, John Collins, and Wei Li.

We are grateful to our students and all the attendees of our courses,
who provided valuable feedback and suggestions to improve both the course
and the book.

Kevin Jackson-Mead, Alice Peters, and all the staff at A K Peters have
done a great job in making this book. We wish to thank you for your care
and your patient attention.

Finally, and most of all, we wish to express our love and gratitude to
our families for their support and for giving us the quiet time we needed
to finish the book.

Additional Resources

Further information, sample programs, data sets, and links to other online
resources can be found at http://www.real-time-volume-graphics.org.

Contents

Preface

1

Theoretical Background and Basic Approaches

1.1 Problem Setting
1.2 Physical Model of Light Transport
1.3 Volume-Rendering Integral
1.4 Discretization
1.5 Volume Data and Reconstruction Filters
1.6 Volume-Rendering Pipeline and Basic Approaches
1.7 Further Reading

GPU Programming

2.1 The Graphics Pipeline
2.2 Vertex Processing
2.3 Fragment Processing
2.4 Frame-Buffer Operations
2.5 Further Reading

Basic GPU-Based Volume Rendering

3.1 Software Components
3.2 2D Texture-Based Volume Rendering
3.3 3D Texture-Based Approach
3.4 2D Multitexture-Based Approach
3.5 Vertex Programs
3.6 Further Reading

Xi

0 B W

10
17
25
30

33
33
35
38
42
45

viii Contents

4 Transfer Functions 8l
4.1 Classification 81
4.2 TImplementation of Pre-Classification 84
4.3 Implementation of Post-Classification. 87
4.4 Pre- versus Post-Interpolative Transfer Functions 89
4.5 Pre-Integrated Transfer Functions 92
4.6 Implementation of Pre-Integrated Transfer Functions 96
4.7 Discussion e e e e e 100
4.8 Further Reading 102
5 Local Volume lllumination 103
5.1 Terminology 105
5.2 Types of Light Sources 106
5.3 Gradient-Based Illumination 108
5.4 Local Illumination Models 114
5.5 Pre-Computed Gradients 122
5.6 On-the-Fly Gradients 127
5.7 Environment Mapping 132
5.8 High Dynamic Range Illumination and Volume Rendering . 135
5.9 Further Reading 137
6 Global Volume lllumination 139
6.1 Volumetric Shadows 140
6.2 Phase Functions 143
6.3 Translucent Volume Lighting 149
6.4 Shading Strategies 158
6.5 Further Reading 161
7 GPU-Based Ray Casting 163
7.1 Basic Structure of Ray Casting 165
7.2 Single-Pass GPU Ray Casting for Uniform Grids 167
7.3 Performance Aspects and Acceleration Methods 170
7.4 Multipass GPU Ray Casting for Uniform Grids 174
7.5 Ray Casting in Tetrahedral Grids 178
7.6 Further Reading 184
8 Improving Performance 187
8.1 Improving Memory Access 187
8.2 Asynchronous Data Upload 192
8.3 Bilinear Filtering 194
8.4 Empty-Space Leaping 196
8.5 Occlusion Culling 197
8.6 Early Ray Termination 200

8.7 Deferred Shading 206

Contents
8.8 Image Downscaling
89 Discussion

9 Improving Image Quality

9.1 Sampling Artifacts
9.2 Filtering Artifacts
9.3 Classification Artifacts,
9.4 Shading Artifacts
9.5 Blending Artifacts

9.6 Discussion

10 Transfer Functions Reloaded
10.1 Image Data versus Scalar Field
10.2 Multidimensional Transfer Functions: Introduction
10.3 Data Value and Derivatives
10.4 General Multidimensional Transfer Functions
10.5 Engineering Multidimensional Transfer Functions
10.6 Transfer-Function User Interfaces
10.7 Further Reading

Il Game Developer’s Guide to Volume Graphics
11.1 Volume Graphics in Games
11.2 Differences from “Standalone” Volume Rendering
11.3 Guide to Other Chapters
11.4 Integrating Volumes with Scene Geometry
11.5 A Simple Volume Ray Caster for Games
11.6 Volumetric Effects
11.7 Simulation
11.8 Integrating Volumes with Scene Shadowing and Lighting . .
11.9 Further Reading

12 Volume Modeling
12.1 Rendering into a 3D Texture
12.2 Voxelization
12.3 Procedural Modeling
12.4 Compositing and Image Processing
12.5 Further Reading

13 Volume Deformation and Animation
13.1 Modeling Paradigms _
13.2 Deformation in Model Space.
13.3 Deformation in Texture Space
13.4 Deformation and Illumination
13.5 Animation Techniques
13.6 Further Reading

Contents

X
14 Non-Photorealistic and lllustrative Techniques 349
14.1 Overview of Methods 350
14.2 Basic NPR Shading Models 360
14.3 Contour Rendering 364
14.4 Surface and Isosurface Curvature 368
14.5 Deferred Shading of Isosurfaces 374
14.6 Curvature-Based Isosurface Illustration. 376
14.7 Further Reading 380
15 Volume Clipping 38l
15.1 Conceptual Description of Volume Clipping 382
15.2 Clipping via Voxelized Selection Volumes 384
15.3 Surface-Based Clipping 391
15.4 Volume Clipping and Illumination 399
15.5 Clipping and Pre-Integration 406
15.6 Clipping and Volume Illustration 409
15.7 Further Reading 413
16 Segmented Volume Data 415
16.1 Overview v i i e e e 417
16.2 Segmented Data Representation. 420
16.3 Rendering Segmented Data 421
16.4 The Basic Rendering Loop 423
16.5 Boundary Filtering 428
16.6 Two-Level Volume Rendering 436
16.7 Further Reading 438
17 Large Volume Data 441
17.1 Memory Performance Considerations 444
17.2 Bricking oo 446
17.3 Multiresolution Volume Rendering 449
17.4 Built-In Texture Compression 450
17.5 Wavelet Compression 451
17.6 Packing Techniques 453
17.7 Vector Quantization 457
17.8 Discussion 458
17.9 Further Reading 459
Bibliography 461
Index 489

Theoretical Background and
Basic Approaches

HIS BOOK COVERS two seemingly very different applications of volume
T graphics: on the one hand, “special effects” and realistic rendering
of clouds, smoke, fire, and similar effects for computer games, movie pro-
duction, and so forth; on the other hand, the scientific visualization of
volumetric data. How do these different fields fit together, and why are
they covered in the same text?

The simple answer is that both fields rely on the same underlying phys-
ical models and therefore use identical, or at least very similar, rendering
techniques. This chapter focuses on the physical model for volume render-
ing, discussing its fundamental mathematical description and its approxi-
mations typically used for real-time volume rendering. The basic idea is to
model light transport in gaseous materials such as clouds or fog. Therefore,
volume graphics targets the same goal as computer graphics in general: the
simulation of light propagation in order to produce images as recorded by
a virtual camera.

The specific challenge for volume graphics is the interaction between
light and the participating media. Light may be absorbed, scattered, or
emitted by the gaseous materials that virtually “participate” in light prop-
agation. This interaction needs to be evaluated at all positions in the
3D volume filled by the gas, making volume rendering a computationally
intensive task. Therefore, the techniques discussed throughout this book
address the issue of efficient volume rendering. The remainder of this chap-
ter focuses on the theoretical foundation for these rendering methods, and
it provides a general overview of the volume-rendering process.

We have decided to lay out a theoretical background for volume ren-
dering in the beginning of this book. Our motivation is to provide a sound
foundation for the various algorithms that are presented in later chapters.
However, for readers who would like to start with practical issues of volume

