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Preface

This books makes an attempt to provide systematic description of recently accumulated
results that shed new light on the well-known object — solitons, i.e., self-supporting soli-
tary waves in nonlinear media. Traditionally, solitons are studied theoretically (in an
analytical and/or numerical form) as one-, two-, or three-dimensional solutions of non-
linear partial differential equations, and experimentally — as pulses or beams in uniform
media. Propagation of solitons in inhomogeneous media was considered too (chiefly,
in a theoretical form), and a general conclusion (which could be easily expected) was
that the soliton would suffer gradual decay in the case of weak inhomogeneity, and
faster destruction in strongly inhomogeneous systems.

However, it was recently found, in sundry physical and mathematical settings, that
a completely different, and much less obvious, situation is possible too — a soliton
may remain a truly robust and intrinsically coherent object traveling long distances
in periodic heterogeneous media, composed of layers with very different properties.
A well-known example is dispersion management in fiber-optic telecommunications,
i.e., the situation when a long fiber link consists of periodically alternating segments
of fibers with opposite signs of the group-velocity dispersion. Such a structure of the
link is necessary, as the dispersion must be compensated on average, which is pro-
vided by the alternation of negative- and positive-dispersion segments. In this case,
a simple result is that localized pulses of light feature periodic internal pulsations but
remain stable on average (do not demonstrate systematic degradation) in the absence
of nonlinearity. A really nontrivial result is that optical solitons, i.e., nonlinear pulses
of light, may also remain extremely stable propagating in such a periodically hetero-
geneous system. Moreover, under certain conditions, (quasi-) solitons may be robust
even in a random dispersion-managed system, with randomly varying lengths of the
dispersion-compensated cells (each cell is a pair of fiber segments with opposite signs
of the dispersion).

While the dispersion management provides for the best known example of stabil-
ity of solitons under “periodic management”, examples of robust oscillating solitons
in periodic heterogeneous systems were also found and investigated in some detail in
a number of other settings. Essentially, they all belong to two areas — nonlinear op-
tics and Bose-Einstein condensation (being altogether different physically, these fields
have a lot in common as concerns their theoretical description). It should be said that
the action of the periodic heterogeneity on a soliton may be realized in two different
ways — as motion of the soliton through the inhomogeneous medium, or as strong peri-
odic variation of system’s parameter(s) in time, while the soliton does not move at all.
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A very interesting example of the latter situation is the so-called Feshbach-resonance
management, when the sign of the effective nonlinearity in a Bose-Einstein conden
sate periodically changes between self-attraction and self-repulsion. In the latter case,
nontrivial examples of stable solitons have also been predicted.

The book aims to summarize results obtained in this field. In fact, a vast majority of
results still have the form of theoretical predictions, as systematic experimental study of
stability of solitons in periodic heterogeneous systems have only been performed in the
context of the dispersion management in fiber optics. For this reason, the material col-
lected in the book has a strong theoretical bias. A hope is that collecting the theoretical
predictions in a systematic form may suggest directions for experimental investiga-
tion of solitons under the “’periodic management”. In particular, creation of solitons in
Bose-Einstein condensates subjected to the Feshbach-resonance management, possi-
bly in combination with spatially periodic potentials, provided by the so-called optical
lattices, seems to be quite feasible in the real experiment, which would be especially
interesting in two- and three-dimensional settings (creation of a three-dimensional soli-
ton in a real experiment has never been reported in any field of physics, despite various
theoretical predictions of this possibility).

As concerns theoretical results, virtually all of them are not rigorous ones, for an
obvious reason — it is very difficult to rigorously prove the existence of stable oscil-
lating localized solutions in models based on nonlinear partial differential equations
with periodically varying coefficients, which provide for the theoretical description of
the systems with periodic management. Therefore, theoretical results are either purely
numerical ones, or, sometimes, they are known in a (semi-) analytical form, which is
based (most frequently) on the variational approximation. Nevertheless, despite the
lack of the rigorous theory, there is a possibility to summarize the results in a system-
atic and sufficiently consistent form. An attempt of that is done in this book. It should
be said that the presentation of material in the book has a rather subjective character
(which is, probably, inevitable in a book on such a topic), as emphasis is made on those
issues and aspects which seem specially interesting or significant from the viewpoint
of the author.

The subject of the periodic management of solitons is far from being completed.
Not only the experimental results are very scarce, as said above, but also theoretical
analysis (even in a non-rigorous form) of many important problems should be further
advanced. However, although the field is in the state of development, a coherent de-
scription of its current status is quite possible.

Three distinct parts can be identified in the book. The first chapter (Introduction).
which is, as a matter of fact, a separate part by itselt, gives a possibly general overview
of solitons, with an intention to briefly outline the most important theoretical models
and results obtained in them, as well as most significant experimental achievements.
Since the length of the introduction is limited, the outline was focused on models and
settings related to the realms of nonlinear optics and Bose-Einstein condensation, as
the concepts and techniques of the periodic soliton managements have been developed
in these areas. The introduction also includes a brief description of the subject and
particular objectives of the book. Then, two technical parts (one includes chapters 2 —
6, and the other chapters 7 — 10) report results, respectively, for one-dimensional and
multidimensional solitons. Such separation is natural, as methods used for the study
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of one-dimensional settings, and the respective results, are very ditferent from those
which are relevant to multidimensional problems (nevertheless, chapter 10 includes
some results for a one-dimensional situation too, which are closely related to the basic
two-dimensional problem which is considered in that chapter).

Writing this book would not be possible without valuable collaborations and dis-
cussions with a large number of colleagues. It is my great pleasure to express the
gratitude to F. Kh. Abdullaev, J. Atai, B. B. Baizakov, Y. B. Band, A. Berntson, J. G.
Caputo, A. R. Champneys, P. Y. P. Chen, P. L. Chu, D. J. Frantzeskakis, B. V. Gisin, D.
J. Kaup, P. G. Kevrekidis, Y. S. Kivshar, R. A. Kraenkel, T. Lakoba, U. Mahlab, D. Mi-
halache, V. Pérez-Garcia, M. Salerno, M. Segev, N. Smyth, L. Torner, M. Trippenbach,
I Wise, and J. Yang. Special thanks are due to younger collaborators (some of them
were my students or postdoc associates), including R. Driben, A. Gubeskys, M. Gutin,
A. Kaplan, M. Matuszewski, T. Mayteevarunyoom, M. [. Merhasin, G. Theocharis, and
[. Towers.

The work on particular projects that have generated essential results included in
this book was supported, in various forms and parts, by grants No. 1999459 from the
Binational (US-Israel) Science Foundation, and No. 8006/03 from the Israel Science
Foundation. At a smaller scale, support was also provided by the European Office of
Research and Development of the US Air Force, and Research Authority of the Tel
Aviv University.
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List of acronyms used in the text:
1D, 2D, 3D - one-dimensional, two-dimensional. three-dimensional
AWG - antiwaveguide
BEC - Bose-Einstein condensation/condensate
BG - Bragg grating
CW - continuous-wave (solution)
DM - dispersion management
DS - dark soliton
FF - fundamental-frequency (wave)
FP - fixed point
FR - Feshbach resonance
FRM - Feshbach-resonance management
FWHM - full width at half-maximum (of an optical pulse)
FWM - four-wave mixing
GPE - Gross-Pitaevskii equation
GS - gap soliton
GVD - group-velocity dispersion
GVM - group-velocity mismatch
HS - hot spot (a local perturbation switching a spatial soliton)
ISI - inter-symbol interference
IST - inverse-scattering transform
KdV - Korteweg - de Vries (equation)
ME - Mathieu equation
NLM - nonlinearity management
NLS - nonlinear Schrodinger (equation or soliton)
ODE - ordinary differential equation
OL - optical lattice
PAD - path-average dispersion
PCF - photonic-crystal fiber
PDE - partial differential equation
PR - parametric resonance
QPM - quasi-phase-matching
RI - refractive index
RZ - return-to-zero (signal)
SH - second harmonic
SHG - second-harmonic generation
SPM - self-phase modulation
SSM - split-step model
STS - spatiotemporal soliton
TF - Thomas-Fermi (approximation)
TS - Townes soliton
VA - variational approximation
WDM - wavelength-division multiplexing
WG - waveguide (when referred to in the context of the waveguding-antiwaveguiding model)
XPM - cross-phase modulation
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Chapter 1

Introduction

1.1 An overview of the concept of solitons

The concept of solitons (solitary waves) plays a profoundly important role in modern
physics and applied mathematics, extending beyond the bounds of these disciplines. It
was introduced in 1965 by Zabusky and Kruskal who numerically simulated collisions
between solitary waves (pulses) in the Korteweg - de Vries (KdV) equation, and dis-
covered that these pulses not only are stable in isolation, but also completely recover
their shapes after collisions [175]; this observation was an incentive which had soon
led to the discovery of the inverse scattering transform (IST) and the very concept of
integrable nonlinear partial differential equations (PDEs) [72]. The next principally
important step in this direction was made by Zakharov and Shabat, who had demon-
strated that the integrability is not a peculiarity specific to a single (KdV) equation, but
is also featured by another equation which finds very important applications in physics,
viz., the nonlinear Schrodinger (NLS) equation [177]. Integrability of the sine-Gordon
equation, which was actually known, in terms of the Bicklund transformation, since the
19th century, was also naturally incorporated into the IST technique (the sine-Gordon
equation finds its most important physical realization in superconductivity, as a dynam-
ical model of a long Josephson junction, i.e., a thin layer of an insulator sandwiched
between two bulk superconductors [170]). Further development of the studies in this
field has produced a body of results which have become a classical contribution to sev-
eral core areas of physics and mathematics. The IST technique and results produced
by it were summarized in several well-known books written by the very same people
who had produced these results [176, 11, 133].

Parallel to the theoretical developments, great progress has been achieved in exper-
imental studies of solitons. The very first published report of observation of a soliton is
due to John Scott Russell, who spotted a stable localized elevation running on the sur-
face of water in a canal in Edinburgh, and pursued it on horseback. In retrospective, the
most astonishing feature of this report, published in 1844 [149], is the very fact that J.
S. Russell was able to instantaneously understand the significance of the phenomenon.
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INTRODUCTION

1.1.1 Optical solitons
Qualitative consideration

In the modern experimental and theoretical studies of solitons, the most significant
progress has been achieved in optics and, most recently, in Bose-Einstein condensates
(BECs). A milestone achievement was the creation of bright temporal solitons in non-
linear optical fibers in 1980 [127], after this possibility had been predicted seven years
earlier [79]. In the realm of nonlinear optics, this was followed by the creation of dark
solitons in fibers [60, 98, 172], bright spatial solitons in planar nonlinear waveguides
[118, 18], and gap solitons (GSs) in fiber Bragg gratings [57]. In all these cases, the
soliton is supported by interplay between the chromatic dispersion (in the temporal
domain) or diffraction (for spatial solitons) of the electromagnetic wave and cubic self-
focusing nonlinearity, induced by the Kerr effect. The latter may be realized as an
effective positive correction, An(I), to the local refractive index (RI) of the material
medium, which is proportional to the local intensity, I, of that very electromagnetic
wave on which the RI acts, i.e., An(]) = nol with a positive coefficient n,. Besides
the self-focusing sign of the Kerr effect (An(I) > 0), its essential property in normal
optical materials is the instantaneous character (no temporal delay between An (/) and
I). In view of the fundamental importance of the temporal and spatial optical solitons
supported by this mechanism, it is relevant to present a short quantitative explanation
for it here.

In the course of the propagation in the nonlinear medium, the light pulse accumu-
lates a phase shift that, through the correction n2[ to the RI, mimics the temporal shape
of the pulse, I = I(t). To understand this feature in a more accurate form, one may
start from the normalized wave equation for the electric field £,

E..+ E:z + Eyy — (n*E),, =0, (1.1)

where the subscripts stand for the partial derivative, z is the propagation distance, x
and y are transverse coordinates, ¢ is time, and 7 is the above-mentioned RI (detailed
derivation of the wave equation can be found, e.g., in book [15]). A solution to Eq.
(1.1) for a one-dimensional wave, which must be a real function, is looked for as

E(Z‘t) _ u‘(:)enkoz—tw.,! + u*(z)()flvk<)2+luﬂ1f. (1.2)

where exp (ikgz — 1wt ) represents a rapidly oscillating carrier wave, the asterisk stands
for the complex conjugation, and u(z,t) is a slowly varying complex local amplitude.
Substituting this in Eq. (1.1), in the lowest approximation one obtains the disper-
sion relation between the propagation constant (wave number) & and frequency w,
ki = (nowo)z‘ with ng the RI in the linear approximation. The next-order approx-
imation, which takes into regard the above correction to the RI, n = ng + nal, yields
an evolution equation for the amplitude,

du  ngno

dz ko

w'glu = 0. (1.3)

Actually, this equatign is a nonlinear one, as the intensity is tantamount to the squared
amplitude, I = |u|?. A solution to Eq. (1.3) is simply A¢ = (ngnz) (wi/ko) Iz,
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where A¢ 1s a nonlinear contribution to the wave’s phase (the accumulation of the non-
linear phase is usually called self-phase modulation, SPM). The corresponding SPM-

induced frequency shift being Aw = —0A¢/0t, one obtains an expression for it,
7
wg dl
Aw = —ngng—2 —z. 1.4
“ a2 k() (]t ( :

It follows tfrom Eq. (1.4) that the lower-frequency components of the pulse, with Aw <
(), develop near its front, where dI /dt > 0 (the intensity grows with time), while higher
frequencies, with Aw > 0, develop close to the rear of the pulse, where dI /dt < 0.

On the other hand, the dielectric response of the material medium is not strictly in-
stantaneous, featuring a finite temporal delay. This implies that the linear part, ¢ = ng,
of the multiplier n? in the wave equation (1.1) (the dynamic dielectric permeability) is,
as a matter of fact, a linear operator, rather than simply a multiplier. The accordingly
modified form of the linear term (¢E),, in Eq. (1.1) becomes (jboo e(T)E(t —T)d7),,,
where 7 is the delay time. Finally, approximating this nonlocal-in-time expression by
a quasi-local expansion, €g Fyy + €2 E4y + ..., which is justified when the actual delay
in the dielectric response is very small, gives rise to second- and higher-order group-
velocity-dispersion (GVD), alias chromatic-dispersion, terms in the eventual propaga-
tion equation, which can be translated into the corresponding linear dispersion relation,
k = k(w) [15].

In particular, the normal (positive) GVD (which means that waves with a higher
frequency have a smaller group velocity, as expressed by the condition that the second-
order-dispersion coefficient is positive, f2 = d?k/dw? > 0) reinforces the above
(nonlinearity-induced) trend to the temporal separation between the low- and high-
frequency components of the pulse, contributing to its rapid spread. On the contrary,
anomalous (negative) GVD (32 < 0), which also occurs in real materials, may com-
pensate the nonlinearity-induced spreading. With the magnitudes of the dispersion
and intensity properly matched, the balance may be perfect, giving rise to very robust
pulses, 1.e., solitons.

Nonlinear Schrodinger equation and solitons

Putting all the above ingredients together, and assuming that the amplitude « in Eg.
(1.2)is a slowly varying function of z and “reduced time”, 7 = t—£/ = (here and below,
the value of the derivative k/, is calculated at the carrier-wave’s frequency, w = wg),
one arrives at the nonlinear Schrodinger (NLS) equation which governs the evolution
of u(z,7),

l 2 .
iUy — 31‘5'“” + y|ul"u = 0, (1.5)

where /3 replaces /3, (the replacement will not lead to confusion, as higher-order disper-
sion, which is different from 35, is not dealt with below), and v = n» v"?,yﬁ /ko. The
introduction of 7 instead of ¢ is necessary to eliminate a term with the first derivative
in t (the group-velocity term), thus casting the NLS equation in the simplest possible
form, namely, the one given by Eq. (1.5).
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Below, a number of models will be considered that may be viewed as various gen-
eralizations of the NLS equation (1.5) — two-component systems, equations with dif-
ferent nonlinearities, multidimensional systems, etc. A very recent succinct review of
equations of the NLS type can be found in article [105].

An elementary property of the NLS equation is its Galilean invariance: any given
solution u(z, 7) automatically generates a family of moving solutions by means of the
Galilean boost that depends on an arbitrary real parameter c (it is an inverse-velocity
shift, relative to the inverse group velocity, &/, of the carrier wave):

. 2 s
u(z,t;e) = u(z, 7 —cz)exp <E—z - %T) . (1.6)

Another simple property of Eq. (1.5) is the modulational instability of CW (continuous-
wave) solutions, ucw = Ao exp (iyA3z) with an arbitrary amplitude Ay: although the
CW solution does not contain the GVD coefficient 3, it is stable in the case of 8y < 0,
and unstable (against 7-dependent perturbations) in the opposite case.
The NLS equation has natural Lagrangian and Hamiltonian representations. The
former one will be considered below (see Eq. (2.7)), while the latter takes the form
0H
M, = —, 1.7
Wiy ou* 7)
where ¢ /du* is the functional derivative, the asterisk stands for the complex conjuga-
tion, and the Hamiltonian,

1 [T 2 4
H——E./ (8 el + A1) i, (L8)

— 00

is considered as a functional of two formally independent arguments, u(7) and (u(7))".
The Hamiltonian is a dynamical invariant of Eq. (1.5), i.e., dH/dz = 0. Two other
straightforward dynamical invariants of the NLS equation are energy E, alias norm of
the solution (in the context of fiber optics, the energy is different from the Hamiltonian),
and momentum P,

1 400 5
E = 5/ [u(T)|* dT, (1.9)
o
P = 1/ uudr. (1.10)

Due to the fact that the NLS equation is exactly integrable by means of the IST,
it has an infinite set of higher-order dynamical invariants, in addition to £, P, and H
[176]. In particular, the first two higher-order invariants are

1+
I, = 5/ (—=Buul, . + 3vy|u|*uul) dr, (L.1D)
—00
1 [t
I, = -
4 o

[ [ el + 22l 98 (1l?),)° + 678 ur o] . 12
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(the subscripts 4 and 5 imply that they follow the first three elementary dynamical
invariants, I/, I?, and H). These higher-order invariants do not have a straightforward
physical interpretation, and are seldom used in applications. Nevertheless, an example
of a physical application of the invariants (1.11) and (1.12) will be presented in this
book, when analyzing splitting of higher - order solitons in the model based on Eq.
(5.5), see subsection 5.2.3.

In the case of the anomalous GVD, 3 < 0 (it is assumed that v is positive), i.e.,
when the CW solutions are unstable, a commonly known family of soliton solutions to

Eq. (1.5)1s
ol T) = %sech (7; (ﬁ — cz)) exp (/ { Cle -+ (7/2 — 02) :}) 5
(1.13)

where 1) and ¢ are arbitrary real parameters, that determine the soliton’s amplitude and
the above-mentioned inverse-velocity shift. The function sech (hyperbolic secant) in
this solution provides for the localization of the soliton. In the experiment, the tem-
poral soliton is observed as a localized pulse running along the fiber with the velocity

N =

V=1/ <k; +c \ﬂ|) The entire soliton family (1.13) is stable against small pertur-
bations.
The application of the IST yields exact solutions of the NLS equation more complex

than the fundamental soliton (1.13). In particular, the initial condition (in the case of
£ < 0)

( ) == ——‘n € —] ( l.1
Ul 7 n S€ Ch T 14)

with integer n and arbitrary 7), that generates the fundamental soliton for n = 1, gives
rise to higher-order “n-solitons” for n > 2 [154]. Analytical expressions for these
solitons with n > 3 are cumbersome. A relatively simple analytical solution describes
the 2-soliton,

5 )
U2s0] = —= 5’/ 2 /) .

4n) cosh (37}T/ V |l3|> + 3exp (41’7;%) cosh <3'r/7’/ vﬁ) ; .
exp (
V7 cosh (4777/ V Iﬁ)) + 4 cosh (27}7/ \/W) + 3cos (4n2z)

(L.15)

As seen from this expression, the shape of the 2-soliton, i.e., the distribution of the
power in the soliton, |u(z, 7)|*, oscillates in z with the period

(1.16)
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which is called the soliton period. 1t can be demonstrated that all the exact n-soliton
solutions generated by the initial condition (1.14) with N > 2 oscillate with exactly
the same period (1.16), irrespective of the integer value of n. In fact, z) is also an



