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The Stereochemistry
of Macromolecules (In Three Volumes)

VOLUME 3



“Nearly all great technological advances depend
upon discoveries so unexpected as to be unplannable.
Nature in her own time reveals her secrets to the
patient questioner, and the plain fact is that nature
is infinitely cleverer than man.”

SIR CYRIL HiNsHELWOOD, The Listener, Sept. 2, 1965.



Introduction to the Series

Most synthetic polymers contain either asymmetric atoms or double
bonds which can give rise to geometrical isomers. As long as thirty years
ago, the problem of stereoisomerism in polymer chains was discussed.
However, the field lay dormant since, at that time, it was not possible
either to synthesize polymers which were highly stereoregular or to
measure the degree of regularity in the chains of those polymers which
were known.

In the late 1940’s, Schildknecht obtained indications that some steric
control could be exerted by the catalyst in the polymerization of vinyl
ethers and Morton developed catalysts which enabled him to influence
the geometrical isomerism in diene polymers. However, it was not until
Natta showed that transition-metal-based catalysts could exert a very
high degree of steric control in the polymerization of simple olefins and a
wide variety of other monomers that this field became a major area of
research.

To some extent, the excitement surrounding the synthesis of highly
stereoregular crystalline polymers has overshadowed another recent
development of almost equal scientific significance—the enormous increase
in our knowledge of the stereochemistry of polymers whose chains do
not possess a high degree of stereoregularity. Undoubtedly the most
important contribution to this latter problem has come from the applica-
tion of nuclear magnetic resonance spectroscopy.

In Volume 1 of this three-volume series, we have attempted to bring
together the latest knowledge of Ziegler-Natta polymerization. In
Volume 2, we are concerned mainly with the stereospecific polymerization
of monomers by catalysts other than the Ziegler-Natta type. In both
volumes an attempt has been made to emphasize the mechanism of these
reactions. In general there is very little real understanding of the way in
which the stereochemistry of the growing chain is controlled, and even
the starting point for any discussion, the structure of the catalyst, has not,
in most cases, been elucidated. Many of the mechanisms which have
been proposed in the literature are pure speculation and are not based on
any experimental facts or accurate chemical knowledge. Consequently,
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vi INTRODUCTION TO THE SERIES

the authors were asked not to impartially present ideas of this kind but
to critically evaluate them and emphasize those which seem most sound.
In this respect, we have given a special place to the ideas of Cossee and
Arlman on Zijegler-Natta catalysis, not because, as these authors them-
selves would agree, they represent a definitive mechanism and all con-
troversy has now ceased, but because the ideas are most in keeping with
current knowledge and their approach seems to be one which could be
most fruitfully followed to plan further research.

In Volume 3, the ways in which the steric structure of polymers may
be determined are discussed, together with the way such structural
features influence the physical, mechanical, and chemical properties of
polymers.* We have also chosen to include in this volume some dis-
cussion of the effects of stereochemistry in processes involving biological
macromolecules. This, obviously, is a topic which is too huge in scope to
receive comprehensive treatment in a book mainly concerned with syn-
thetic polymers. On the other hand, it is far too important to neglect.
We have, consequently, aimed at including some material which might
stimulate polymer chemists to work at the interface between their own
field and biochemistry. We feel strongly that this kind of interaction is
of enormous importance. The direct study of biological systems is made
difficult by their overwhelming complexity. Small molecules are often,
on the other hand, too far removed as realistic models for meaningful
extrapolation to biological systems to be made. Synthetic polymers, in
many cases, may be the best compromise between reality and sim-
plicity.

Perhaps because polymer chemistry has such great industrial importance,
chemists and physicists working in other areas have, it seems, sometimes
regarded it as a relatively uninteresting field for research. We hope that
these volumes will help to show that polymer chemistry is, in fact, an area
of almost infinite fascination. The problems are often tremendously
complex but the rewards for solving them are correspondingly great.
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CHAPTER 1

Chain Conformation and Crystallinity

P. Corradini
ISTITUTO CHIMICO
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I. CONFIGURATION OF STEREOREGULAR POLYMERS
A. Definitions

The constitution of a compound specifies which atoms in the molecule
are bound to one another and with what type of bonds, without regard to
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2 P. CORRADINI

their spatial arrangement (/). A polymer is said to be regular when its
constitution is regular; thatis, its constitution is described by the enchain-
ment of conventional base units all of the same type, in a head-to-tail
sequence (2).

The configuration of a compound specifies the spatial arrangement of
bonds in a molecule (of a given constitution) without regard to the multi-
plicity of spatial arrangements that may arise by rotation about single
bonds. The configuration of a polymer is regular, and the polymer is said
to be stereoregular, when its constitution is regular, and the law of suc-
cession of configurations of successive base units is assigned (3).

R
\\‘c/
\Ci% l(-)b ci'/
~ N
R~ _R" . .
\Cj NP
I N
Cia Cig
am b=

Fig. 1. Tetrahedral stereoisomeric centers. Definition of (+) and (—) bonds.

Different configurations of a regular polymer arise from the existence
of stereoisomeric centers. The more important stereoisomeric centers that
are found along the chain of a polymer are as follows:

1. Double bonds, which can have a cis or trans configuration

2. Tetrahedral stereoisomeric centers, that is, carbon atoms along the
chain, bonded to two different substituents R’ and R”

As regards the second type of stereoisomeric center, it is important to
note that the two bonds of the chain adjacent to the carbon atom con-
stituting the stereoisomeric center can be distinguished from a configura-
tional viewpoint as (+) or (—) bonds (Fig. 1). This is also true where the
carbon atom is not optically active. We shall designate by the (+) sign,
with respect to the stereoisomeric center C;, a bond adjacent to C; along
a chain

RI ”
—CHL)\C,{LC.» -
such that, as we look down the C,_,—C, bond (a) or the C, ,—C; bond
(b), we see that the substituents C,,,, R’, and R” or C,_;, R/, and R”
succeed each other by a clockwise rotation. R’ is conventionally defined



CHAIN CONFORMATION AND CRYSTALLINITY 3

as being bulkier than R” (4). We can define a (—) bond in an analogous
manner. It is clear that, if (a) is (+) with respect to the stereoisomeric
center C;, (b) must be (—), and vice versa; bonds astride a tetrahedral
stereoisomeric center are always opposite in sign by definition.

Two monomeric units are identical, from the configurational viewpoint,
when corresponding bonds are characterized by the same set of (+) and
(—) signs; they are configurationally enantiomorphous if corresponding
bonds are characterized by opposite signs. Hence, insofar as the chain

N, y '\CM/ N S d '\*CM/ B
B 2\ THREO ) SN\

NN P N N

cl—l (':hl
R',' \ ERYTHRO \

Fig. 2. Threo and erythro relative configurations.

atoms are concerned, enantiomorphous configurations of a monomeric
unit can be obtained simply by changing all the configurational signs in an
orderly manner.

As regards polymers having tetrahedral stereoisomeric centers, we call
a polymer “isotactic” if it is formed from monomeric units with regular
enchainment which are configurationally identical for long sequences of the
chain and “syndiotactic” if it is formed from monomeric units with regular
enchainment, alternately enantiomorphous from a configurational view-
point. Isotaxy and syndiotaxy are the only two possibilities of stereo-
regular enchainment of order 1.

Whenever a monomeric unit contains more than one tetrahedral
stereoisomeric center, it is necessary to define the relative configuration
of the centers. In the case of two adjacent stereoisomeric centers, for
instance, —CHR— and —CHR'—, the bond connecting them can be
assigned two configurational signs (Fig. 2). The pairs (—,—) or (+,+)
define a relative configuration threo, whereas the pairs (—,+) or (4,—)
define a relative configuration erythro.



